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Abstract—Approximate Nearest Neighbor Search (ANNS) is
widely used in various fields, including database systems, rec-
ommendation engines, and large language models. As data di-
mension and size continue to expand, many studies explore GPU
acceleration for graph-based ANNS. While previous methods use
large batch to maximize throughput, they often lead to increased
latency. In contrast, small batch is more effective for online low-
latency applications, as it minimizes batch accumulation time.
However, employing small batch on GPU presents challenges.
First, the query bubble issue in batch processing negatively
impacts both latency and GPU utilization. Second, current GPU
search methods incur excessive sorting overhead, and introduce
additional TopK-merging overhead on GPU. To address these
challenges, we propose ALGAS, a low-latency GPU search
system designed for small batch. ALGAS employs dynamic
batching based on persistent GPU kernel function to optimize
query bubble. Additionally, it employs beam extend to reduce
sorting overhead, especially effective at high recall rate. It also
eliminates TopK-merging overhead via GPU-CPU cooperation.
Furthermore, it employs an adaptive GPU tuning scheme to
optimize resource utilization. We compare ALGAS with the state-
of-the-art graph-based works. ALGAS reduces latency by up to
21.9%-35.4% and increases throughput by up to 27.8%-55.2%
under various real-world datasets.

Index Terms—approximate nearest neighbors, GPU, informa-
tion retrieval, vector similarity search

I. INTRODUCTION

Vector retrieval plays a critical role in various domains,
including databases [1], [2], recommendation systems [3],
[4], and large language models [5], [6]. It is a k-nearest
neighbor (k-NN) search problem, where the objective is to
search the k closest vectors to a given query vector. To reduce
the computational cost of k-NN search, researchers propose
approximate nearest neighbor search (ANNS), which allows
precision loss while significantly improving search efficiency.

Current research on ANNS classifies methods into hashing-
based [7], [8], tree-based [9]-[11], quantization-based [12]—
[14], and graph-based methods [15]-[20]. Graph-based meth-
ods perform excellently in terms of performance and recall.
The increasing computational costs caused by the growing data
dimensions and data size drive researchers to leverage GPU
for accelerating ANNS [21]-[25], which achieve significant
throughput, especially in graph-based ANNS.

Unfortunately, most GPU-based graph ANNS focus on
throughput under large batch, with limited discussion on
small batch. While using large batch can significantly enhance

throughput, it comes at the cost of increased latency. First,
waiting for enough requests to accumulate large batch is
impractical in some real-world scenarios (e.g., online vector
retrieval). Second, scheduling a large number of queries on
limited GPU cores can significantly increase GPU utilization,
but it reduces the resources available for each query, leading to
increased latency. Conversely, small batch can be accumulated
more quickly, allowing for faster processing of queries. With
fixed resources, each query in small batch accesses more
resources, balancing the performance and latency.

TABLE I: Performance in Graph-based GPU search works

batch size Throughput Latency
CAGRA single query moderate good
CAGRA large batch good bad
ALGAS small batch good good
GANNS large batch moderate bad

However, we identify several bottlenecks limiting the ef-
fectiveness of employing small batch. First, due to different
search deep of queries, there is a query bubble within the
batch. Different search times require the batch to wait for the
slowest query to finish, negatively impacting the latency of
shorter queries. Furthermore, the more frequent processing of
small batch leads to increased idle time. Unlike large batch,
small batch cannot enhance GPU utilization by scheduling a
significant number of queries. As a result, idle cores occur
during wait times, ultimately causing decreased GPU utiliza-
tion. Compared to the average latency of active queries, the
waste rate ranges from 22.9% to 33.7%.

Second, limitations of parallel algorithm: In graph based
greedy search, it is necessary to sort the candidate list to ob-
tain closest unvisited points. Current GPU algorithms exhibit
significant sorting overhead, with parallel sorting methods
resulting in an overhead of 19.9% to 33.9%. This directly
constrains latency and throughput. In small batch, to enhance
GPU utilization, queries should be allocated to numerous
GPU threads. However, GPU Cooperative Thread Array (CTA)
has a limit on the number of threads, requiring queries to
span multiple CTAs to utilize additional threads. The Multi-
CTA approach introduces an additional TopK merge operation
once the search completes. This operation requires additional
synchronization, extending the critical path and increasing
latency during the search process.



In this paper, we introduce ALGAS, a low-latency GPU-
accelerated graph search system optimized for small batch.
Table I presents a performance comparison between ALGAS
and state-of-the-art graph-based GPU methods. Compared
with other works, ALGAS reduces latency by up to 21.9%-
35.4% and increases throughput by up to 27.8% to 55.2%
across different datasets.

The main contributions of our paper are as follows:

¢ Dynamic Batching Mechanism: We introduce a dynamic
batching mechanism. It modifies batch to fixed slots and
introduces state management for each independent slot,
eliminating the bubble problem associated without batch
synchronization. By employing a persistent kernel function
to fix slots within the GPU, we eliminate the overhead
associated with frequently launching kernel functions in
small batch processing.

o Optimized parallel algorithm: We propose a optimized
parallel algorithm to reduce the sorting overhead and the
synchronization overhead associated with merging TopK
results. We employ the beam extend method to reduce
the number of sorting operations in the later phase of the
search, lowering query latency. Additionally, we migrate the
TopK merge operation to the CPU, allowing the GPU to
focus on more efficient distance calculation and reducing
the communication overhead associated with multiple CTAs
on the GPU.

o Adaptive GPU parameter tuning scheme: We implement an
adaptive tuning scheme for GPU resources and persistent
kernel, allowing users to determine the best tuning strategy
based on GPU hardware and software parameters, maximiz-
ing GPU resource utilization.

II. BACKGROUND
A. ANNS

Approximate Nearest Neighbor Search (ANNS) is an ap-
proximate solution to the k-nearest neighbor (k-NN) problem.
The k-NN problem involves a set of n-dimensional vectors
P and, given a point p € P where p € R", the goal is to
find k vectors (p1,p2,...,px) € P that are closest to a query
point ¢ € R™. The similarity between vectors is computed
using a distance function F'(a,b), with common distance
functions including Euclidean distance and cosine similarity.
In Approximate Nearest Neighbor Search, to balance search
performance and accuracy, the output consists of & approxi-
mate nearest neighbor vectors Kapproximate rather than the true k
nearest neighbors Ki,¢. We evaluate the approximation quality
using the recall rate defined as recall = W A
higher recall rate indicates a stronger recall capability of the
algorithm.

Graph-based ANNS constructs an approximate nearest
neighbor graph index from P, achieving excellent performance
in both retrieval speed and recall. The approximate nearest
neighbor graph G = (V,E) connects the vectors in P
according to specific graph construction rules, and during
retrieval. The search process utilizes a greedy exploration

approach to gather candidate points. Once a sufficient number
of candidates are collected, the k nearest points are selected as
the TopK results. Algorithm 1 describes a basic GPU parallel
search process.

Algorithm 1 Parallel Greedy Search Algorithm

1: Input: Graph G; query g; enter point p; candidate size [
2: Output: £ nearest neighbors of query point ¢
3: function GREEDYSEARCH(G, g, p, ()

4: i+ 0,50

5: S.add(p)

6: while ¢ < [ do

7: i < first unchecked index in S

8 mark p; as checked

9: for each neighbor n of p; in G do

10: for each ngyuppec € n in parallel do

11: d(ssubvec) — DiStance(nsubvecv QSubvec)
12: end for

13: d(s) < Aggregate(d(Ssupvec) for all ngypyec)
14: S.add(n)

15: end for

16: S < parallel sort S by distance to ¢

17: if size of S > [ then

18: S.resize(l)

19: end if
20: end while
21: return first k£ elements in S

22: end function

B. GPU Architecture

NVIDIA GPU contains multiple Streaming Multiprocessors
(SMs). Each SM has several stream processors (SPs), also
known as CUDA cores, responsible for executing specific
arithmetic and logical operations. Multiple CUDA cores within
SM are scheduled in a unit called warp, where the cores in a
warp execute the same instruction at the same time and can use
warp shuffle instruction to speed up. The storage architecture
of GPUs is hierarchical. Global Memory, accessible to all
cores, offers the largest capacity but slower speeds. Each SM
has a portion of Shared Memory that can only be accessed by
cores within the same SM. For external memory, NVIDIA’s
Unified Memory supports memory over-subscription, enabling
programs to operate beyond the GPU memory limit.

CUDA [26] is the mainstream general-purpose parallel
programming model for NVIDIA GPU. The GPU performs
parallel computation in the form of kernel functions and ab-
stracts a three-tier organizational structure of threads, blocks,
and grids at the software level. Threads correspond to CUDA
cores. Multiple warps combine to form Cooperative Thread
Array (CTA), which makes up a block; The grid defines the
number of blocks that can run a kernel function.



III. MOTIVATION
A. Query bubble between batches

In Graph-based ANNS, combining multiple queries into
a single batch can effectively utilize GPU resources. Prior
works, including SONG [22] and GANNS [23], focus on
employing a single search kernel function to process a large
batch, saturating the GPU resources and achieving great
throughput. However, in most online scenarios, gathering such
a large batch for searching is impractical, as it would result in
significantly high end-to-end latency. Small batch processing is
a more reasonable choice, as it can achieve low query latency
while maintaining high throughput.
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Fig. 1: The distribution of query steps of the whole dataset.

Batch processing requires synchronization on GPU; as a
result, the completion time of a batch is determined by the
slowest query. Unfortunately, we observe that the expected
search times of queries are different, and some queries have
longer tail latency. To verify this phenomenon, we count the
number of steps in the query process. Each step consists of
selecting the best unvisited point, expanding it, and resorting
the candidate list, as shown in Algorithm 1 (line 7 to line
19). Fig. 1 shows the relevant results of different datasets.
We observe significant variation in the number of steps across
queries. For each dataset, we construct a graph index and
collect steps of queries in its corresponding query set. To
provide a clearer representation of the overall distribution, we
excluded certain outliers from the dataset with excessively low
step values. For queries with the highest number of steps, their
step counts can reach 147.9%-190.2% of the average step
count. These slow queries with long steps limit the overall
improvements of latency.
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Fig. 2: The distribution of query steps within a batch

Even in small batch, there is a noticeable unevenness in the
number of steps between queries. Fig. 2 shows the distribution

of steps within a batch (batch size is 32). Without loss of
generality, we selected 8 batches for each dataset to show the
results. In GIST1M, The distribution of query steps ranges
from about 70 to 100. The slowest query takes up to 32.4%
more steps than the fastest query. The completion time of the
batch is predominantly determined by the tail latency, severely
impacting the latency of the queries that are not in the tail.
We refer to this phenomenon as the query bubble. During
the processing of the slowest query, some cores (responsible
for processing faster queries) remain idle in single kernel
processing.

The above analysis motivates us to reduce the impact of the
query bubble by utilizing idle GPU cores as much as possible
and allow completed queries to exit earlier.

B. Limitations of GPU Parallel Algorithm

In Graph-based ANNS, queries can be processed in parallel
on GPU. Intra-CTA refers to the parallel processing of threads
within a CTA, where threads compute partial dimensions and
merge sub-distances. To achieve higher thread parallelism
beyond the capacity of a single CTA, multiple CTAs should be
employed, which is referred to as Multi-CTA. Currently, CA-
GRA [25] implements Multi-CTA, where each CTA maintains
its own candidate list and enters random entry point, executing
the intra-CTA search mode. The CTAs share a visited table and
merge their immediate TopK after the search is complete.

However, we find several bottlenecks. The search within
intra-CTA incurs significant overhead from maintaining the
candidate list, as sorting new neighbors and candidate points
is computationally expensive. As shown in Fig. 3, the sort-
ing overhead can reach 19.9% to 33.9% across different
datasets. Even though our intra-CTA implementation draws
from the more efficient maintenance of parallel data structures
in GANNS [23], this overhead remains significant and directly
affects latency.
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Fig. 3: The percentage of time on calculation and sorting

The Multi-CTA approach [25] requires merging the TopK
results from each CTA into final TopK after the search com-
pletes. Since merging across CTAs requires access to global
memory, it cannot utilize the more efficient shared memory.
Moreover, merging multiple ordered TopK results has limited
parallelism. Even with a divide-and-conquer approach, nearly
half of the cores remain idle, leading to inefficient resource
utilization.

Optimizing the sorting overhead in intra-CTA and ad-
dressing the TopK merge issue in Multi-CTA are significant
challenges.



IV. DESIGN

In this section, we introduce ALGAS, a low-latency GPU-
accelerated ANN search system. The overview of ALGAS is
illustrated in Fig. 6.

For the query bubble issue, we propose a dynamic batching
mechanism that splits the batch into independent slots. By
implementing persistent kernel function, each slot can operate
independently on the GPU without batch synchronization,
which reduces the query bubble between batches, thereby
preventing the GPU cores from being idle. We introduce this
method in Section IV-A. Additionally, we develope a parallel
search algorithm optimized for the GPU, which reduces the
frequency of maintenance sorting on the candidate list during
the search process and offloads the TopK merging to the
CPU. This allows the GPU to focus more on efficient and
parallel distance computation. We show the design details in
Section IV-B. To determine the optimal parallel parameters,
we incorporate specific tuning based on hardware and soft-
ware parameters to maximize GPU utilization as shown in
Section IV-C.

A. Dynamic Batching

To reduce the query bubble in batch processing, an intu-
itive solution is to merge multiple batches, eliminating batch
boundaries and reducing the wasted space.

We propose a dynamic batching designed to reduce bubble
between batches. Our objective is to efficiently organize the
submitted query requests, thereby minimizing inefficiencies in
batch processing. As shown in Fig. 4, compressing multiple
batch bubble not only reduces the overall completion time
for multiple batches but also allows shorter queries to return
results faster.
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Fig. 4: Static Batching vs Dynamic Batching

In our design, we transform the batching process into
independent slots that do not affect each other. Each slot is
fully responsible for the execution lifecycle of a single query,
including dispatching the query from the host to the GPU and
returning the result to the host after computation. Once a slot
completes executing a query, it can immediately dispatch the
next prepared query without waiting for all queries in the same
batch to finish.

To enhance the synchronization of slot-level information
between the host and the GPU, we introduce the state for
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Fig. 5: State Transition Process of Query

each slot and categorize them into 5 states. Below, we briefly
outline each state and the transitions between them.

« None After a slot is initialized, its state is in None, indicating
that the slot can accept a new query request.

o Work The host sends a query to a slot and fill to the GPU,
subsequently updating the states of the corresponding CTAs
to Work. Once the CTAs associated with the slot detect that
the state has been set, it will receive the query and start
performing the search.

o Finish After completing the search, CTA is responsible
for pushing the query results to the designated location.
Subsequently, the CTA changes the state to Finish.

o Done When the host perceives that all CTAs are in the
Finish, it retrieves the corresponding query results. After
completing the current query, the slot has two options:
acquire the next query and change all states of its CTAs
to Work or exit directly.

o Quit This state indicates that the slot has exited and will no
longer accept new queries.

Persistent Kernel Function: The GPU search algorithms
often implement single-kernel function for performance. How-
ever, the single-kernel design presents an implementation
challenge for dynamic batching, which requires operations
across multiple batches.

Dynamic batching requires checking the state of each slot. A
simple approach is to partition the kernel. The kernel performs
a fixed number of steps and then exits, allowing the host to
check completed queries and add new ones. But this approach
incurs significant memory access overhead. Each kernel check-
ing requires the repeated loading of data into shared memory.
Deciding the timing for checking is quite challenging because
overly frequent checks can increase overhead, while infrequent
checks may not eliminate enough bubble.

To address this, we implement a persistent kernel function
that allows for state checking without splitting the kernel.
Specifically, we change the kernel’s checking method to a
polling mode, enabling the kernel to poll and modify states
on the GPU side rather than being entirely controlled by the
host. As shown in Fig. 6, each CTA assign to a kernel slot
maintains its own state, enabling it to operate independently
and eliminating the need for kernel exit, thereby reducing
overhead.
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Fig. 6: The Overview of ALGAS

B. Search Algorithm

In this section, we introduce beam extend to optimize the
sorting overhead within intra-CTA. Next, we introduce the op-
timization of the TopK merging for Multi-CTA through GPU-
CPU cooperation. Finally, we gradually outline the specific
search process in Fig. 6.

Beam Extend in Intra-CTA: To increase the percentage
of distance computations on the GPU, it is essential to reduce
sorting operations. We analyze the role of candidate list
maintenance operation in the query search process. Searching
on the graph is a type of greedy search, where in each iteration,
the query needs to select the closest unvisited candidate point
and then compute the distance to its neighbors. After adding
new points to the candidate list, maintenance is required to
ensure that the next iteration can continue to select closest
candidate point.
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This process prompts us to consider the necessity of main-
taining the candidate list in each iteration. In Fig. 7, We collect
distance data for the query during the search process. We
find the distances between the query and the search points
decrease sharply in the early stages, while they gradually
converge in the later stages. This indicates that the early
stage primarily focuses on locating the region where the TopK
resides, resulting in significant distance variations. In contrast,
the later stage conducts a diffusion search within that small
region, leading to smaller distance changes.

Frequent sorting during the diffusion phase seems unneces-
sary because this phase requires accessing most points within
a small region, and most of these points will eventually be
visited. Therefore, there is no need to ensure a strictly greedy
selection. Especially at high recall, a larger candidate list
necessitates a broader access region.

We propose the beam extend method to optimize sorting
overhead, considering it in two phases. In time of phase
division, we can determine this time based on the offset of
the currently selected candidate point within the list. In the
early phase, referred to as the localization phase, we maintain
the candidate list in each iteration using a standard greedy
search method, allowing us to quickly identify the small
region containing the TopK. In the later phase, referred to
as the diffusing phase, we execute the beam extend method.
Specifically, during the diffusing phase, we skip some sorting
operations for several iterations, performing sorting after a few
iterations. From the perspective of selecting candidate points,
we choose several points at once for neighbor expansion.
The new points generated from several iterations are added
to the candidate list through a single maintenance operation.
Although this approach may result in a less greedy search,
it does not significantly impact recall, as most of the points
in the small region will ultimately be visited. This reduces
the number of sorting operations during the search process,
directly lowering latency.

GPU-CPU Cooperation in Multi-CTA: The multi-CTA
method requires an additional TopK merge operation to merge
sub-sequences from multiple CTAs. Performing the merge
operation within the Multi-CTA search kernel is inefficient,
as cross-CTA data synchronization incurs slower global mem-
ory access and reduces GPU utilization. Even a divide-and-
conquer merging approach can result in nearly half of threads
remaining idle. More importantly, the independent merge ker-
nel conflicts with the design of persistent kernels in dynamic
batching, as the persistent kernel must be interrupted to launch
the merge kernel.
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We address this challenge by approaching the problem from
a higher level. The TopK merge operation is a critical step in
the execution path and represents the final operation performed
on the GPU. As a result, offloading this operation to the CPU
does not incur additional GPU-related computations, such as
resuming GPU processing.

In Fig. 8, we decouple the TopK merge operation from the
GPU. In this way, the GPU focuses on low-communication
parallel search, while the CPU leverages its low memory
access latency to perform merging tasks. At this point, the
GPU does not require any additional synchronization across
CTAs, except for sharing the visited table. This method
integrates well with dynamic batching, which decouples batch
into independent slots. The CPU can perform the TopK merge
operation smoothly for each slot, without waiting for batch
synchronization, thereby reducing the overhead associated
with TopK merge operations. In the data organization for slots
and CTAs, we place the CTA results of the same query in
a continuous address space. The CPU only needs a single
sequential I/O operation to retrieve all results for the queries
across CTAs. We provide a detailed discussion of this process
next.

Process of Query Searching: We outline the search al-
gorithm in specific steps, with each step corresponding to a
particular number in Fig. 6. Assuming we need to search for
the TopK data points, with a candidate list of max length L,
an expand list length, and T CTAs used for the search.

@ Send Query: The host sends a query to the slot, setting
CTAs states of slot to Work. The CTAs in the slot poll the
state and initiate the search once the Work state is detected.
Each CTA initializes a part of the visited table, implemented
as a bitmap.

® Scarch in CTA: Each CTA follows the same process: @
The CTA selects the closet unvisited point as candidate point
from its candidate list. Then, the CTA obtains the neighbors
of this candidate point and adds them to the expand list. If all
points in the candidate list have been visited, the state changes
to Finish and the search exits. @ The CTA checks the points
in the expand list using the bitmap to determine whether their
distances have been calculated. It filters out the visited points
and marks the unvisited points in the bitmap. ® The CTA
calculates the distances between the query and the points in
the expand list. It distributes the dimension according to the
number of threads in the CTA, with each thread computing
a portion of the dimension distance, and then aggregates the
distances by shuffle operation. @ The CTA performs a parallel-

friendly bitonic sort. First, it sorts the expand list based on
distances. Then, it merges the candidate list and expand list
through this sorting, keeping the top L (where L > TopK)
points in the candidate list.

© Host State Monitoring: The host polls the states of all
corresponding search CTAs. Once all states of the slot are
detected as Finish, the host fetches all results. It loads the
next query into the slot, sets its states, and the slot proceeds
with the next search round.

O Result Merge&Filter: Host uses a priority queue to merge
TopK, filters out unnecessary data, submits the results.

C. Adaptive Tuning Scheme

To maximize throughput and minimize latency, it is essential
to fully utilize the cores and storage resources on the GPU.
Since the dynamic batching kernel function has been modified
into a persistent kernel, there are differences in resource
allocation compared to normal CUDA kernels. Specifically,
we need to ensure that all slots can activate simultaneously.
This requires that the allocation of logical resources for
each slot remains within these physical limitations to ensure
simultaneous activation.

To facilitate management and shuffle operations, we set
the number of threads per block to match the warp size. We
develop an optimal parallel scheme by adjusting Npraner based
on the hardware parameters. In this context, Npayer indicates
how many CTAs are assigned for each query. To support the
simultaneous execution of all blocks, the following condition
must be satisfied:

Nparallel -slot < Ngm - N max_block_per_SM

Ngm is the number of multiprocessors, and Niax_plock_per_SM
is the number of blocks that each SM can simultaneously
support. With a fixed number of slots, we need to dynami-
cally adjust Npgager. This allows us to determine the suitable

Nblock_per_SM :
Nblock?perfSM = align(Nparallel . SlOt/ NSM)

The candidate list and expand list are frequently accessed
data structures during the search process. To enhance ef-
ficiency, we store them in shared memory, referred to as
Mayail_per_block- 1t is clear that Mayail_per block Will vary based
on the sizes of the candidate list and expand list.

In the CUDA configuration, we allocate a portion of shared
memory for each block, while the remaining unallocated
shared memory acts as a runtime cache. For datasets with
higher dimensions, the reserved shared memory per block
may be insufficient, resulting in performance degradation.
Therefore, we allow for the reservation of additional shared
memory as cache during parameter adjustment, denoted as
Meserved_per_block, With its specific size adjustable based on the
data dimension.

The maximum shared memory allocated to blocks within
a multiprocessor is limited by My sm, Which represents
the "Shared Memory per Multiprocessor." To support the
maximum number of Npaaier and persistent kernel, we need



to maximize the number of blocks that a multiprocessor
can run simultaneously. The total shared memory used by
blocks within the same multiprocessor cannot exceed the
maximum supported by the multiprocessor; otherwise, they
cannot run simultaneously. Therefore, the maximum shared
memory available must satisfy:

Mavail_per_block S Mper_SM / Nblock_per_SM - Mreserved_per_block

Mayail_per_block 18 the available share memory per block, and
M,er_sum is the capacity of shared memory per multiprocessor.

Regarding the timing for activating beam search, we first de-
fine a search threshold offsetye.m. When the searcher expands
to include a point located at offsetye,, within the candidate
list, we consider this to be the later stage of the search, at
which point we start beam search.

V. OPTIMIZATION

In this section, we discuss key optimizations in ALGAS.
First, we address the optimization of state transmission con-
cerning PCle I/O bottleneck. Then, we describe the use of
parallel processing on the host to handle queries.

A. State Optimization

We find that increasing the number of slots leads to a
higher volume of state transmitted via PCle. This increase
results in an I/O bottleneck that affects the transmission of
query vectors and results for all slots. Especially in small-
dimensional datasets, it frequently involves cross-PCle data
exchanges. To address this, we employ copies of the state to
optimize unnecessary PCle I/O.

State transfer between the host and GPU primarily involves
synchronizing information, with the host polling GPU states
and generating a large number of small PCle I/O transactions.
However, in most cases, the polling frequency of the host
exceeds the rate of state changes. As a result, much of the
polling is ineffective, as the state often hasn’t changed. While
using blocking mode can reduce PCle I/O, its performance is
generally not as good as polling.

To address this, we use local copy of slot states on the host
and GPU. By polling the local slot state, we can avoid cross-
PCIe communication. When the GPU updates the local slot
state, it only needs to perform a single PCle transfer to update
the corresponding remote slot state. In Fig. 9, we prepare state
copies for each slot on both the host and GPU, located in their
respective memory, and map address of copies to each other
using GDRcopy [27]. When the host or GPU needs to change
a state, it updates the local state and makes a single PCle
transfer to update the remote state copy. During polling, we do
not generate any PCle transfers. Although both the GPU and
host can modify states, no consistency conflicts arise because
only one side has modification right at any given time. The
GPU has modification right only after a query is received,
while the host retains modification right for all other states.

é local polling
Host m <_re,ad rdevlce state
<—Wwirte—>» xslot

il Bl K
map wrlte once .
1 write once
rhst{s?st-ate- | read— dewce state
GPU | ey a <€<—Wwirte>»
Iocal polling xslot

Fig. 9: Mechanism of State Optimization

B. Parallel Processing on Host

The host needs to send queries, retrieve results, and perform
merging and filtering operations. Due to the use of dynamic
batching, the return timing of each query is uncertain, which
requires the host to poll these queries and retrieve the results
via IO streams. When the batch size is larger, such as above
32, a single host thread may struggle to respond to so many
queries. This issue is particularly pronounced in datasets with
smaller dimensions or quantities, where computations return
rapidly, necessitating more frequent processing by the host.

To address this issue, we adopt a parallel processing model,
assigning each thread a subset of slots. We also allocate private
IO streams for each host thread to prevent IO blocking. In
the implementation, each host thread initializes its designated
slots and relevant metadata. They employ a concurrent query
manager module to handle query distribution. The slots man-
aged by a single host thread share a common IO stream for
handling queries. Each host thread monitors the states of CTAs
within its slots, and once all CTAs in a slot have finished, it
retrieves results sequentially through the stream. Finally, the
host performs merge and filter operations before handling a
new query.

VI. EXPERIMENTS

This section presents the experiments conducted to evaluate
the search performance efficiency of the proposed ALGAS.

We conduct our experiments on a server running Ubuntu
20.04.1 with Linux kernel version 5.15.0. This server com-
prises two NUMA nodes, each containing a CPU featuring
10 physical cores (Intel Xeon Silver 4210 @ 2.20GHz) and
128GB of DRAM. Additionally, the server includes an Nvidia
Quadro A6000 GPU [28], utilizing the 535.104.05 GPU driver.
For more details regarding the GPU configuration, refer to
Table II.

TABLE II: RTX A6000 Device Properties

Property Value
Shared memory per block 48 KiB
Shared memory per multiprocessor 100 KiB
Reserved shared memory per block 1 KiB
deviceProp.sharedMemPerBlockOptin 99 KiB
Number of SMs 84

Max blocks of SM 16

Max threads per block 1024
Warp size 32




We select four datasets for the experiments. Table III
presents the data sizes and dimensions. To verify ALGAS can
support general GPU graph, we use NSW-GANNS graph [23]
and CAGRA graph [25] on the experiments. We compare
ALGAS with three search methods:

e CAGRA [25]: This is one of the state-of-the-art works, with
advantages in single-query latency.

« GANNS [23]: A representative work on GPU. For compari-
son purposes, we make a modification to GANNS, allowing
for a smaller batch size to be dispatched to the GPU instead
of sending the entire query set.

o IVF [21]: IVF implemented by FAISS-GPU, a widely
used open-source library for approximate Nearest Neighbor
Search.

TABLE III: Properties of Dataset

Vertices Dimension Metric
SIFTIM [29] M 128 Euclidean
GISTIM [29] 1M 960 Euclidean
GLoVe200 [30]| 1.18M 200 CosineSimilarity
NYTimes [31] | 0.29M 256 CosineSimilarity

A. Performance Comparison

We compare the performance of different graph-based meth-
ods under small batch size, using a batch size of 16 as a
representative case. Similar performance trends are observed
for other small batch sizes. The TopK parameter is fixed at
16, and the candidate list size is the primary factor controlling
recall. Fig. 12 illustrates the variation in average latency for
different TopK, with red numbers indicating recall rates. Other
parameters are optimized using an adaptive tuning scheme.
Both CAGRA and GANNS employ the same batch size for
query execution.

As shown in Fig. 10 and Fig. 11, ALGAS demonstrates
superior latency and throughput. The figure labels follow the
format: the first part represents the graph type, and the second
part represents the search method (e.g., CAGRA-ALGAS de-
notes searching the CAGRA graph using the ALGAS method).
GANNS, due to the absence of a multi-CTA implementation,
fails to fully utilize GPU resources in small-batch settings, re-
sulting in lower throughput. Compared with CAGRA, ALGAS
reduces latency by 21.9%-35.4%, and improves throughput by
27.8%-55.2%.

B. Latency on Dynamic Batching

To evaluate the performance of dynamic batching, We
collect and sort latency data for all queries to highlight the
differences between the two batching modes, as shown in Fig.
13. It is evident that dynamic batching generally results in
lower latency compared to static batch process. In dynamic
batching, queries with faster response times can return results
earlier.

C. Different Batch Size

Batch size impacts throughput and limits the maximum
number of CTAs and shared memory available to each query,
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which in turn can increase the latency of individual queries.
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Batch size also affects data transfer over PCle, with larger
batch requiring more frequent data exchanges between the
host and the GPU, such as dispatching queries and collecting
results. In Fig. 14 and Fig. 15, we evaluate the performance
of ALGAS under different batch sizes with fixed recall.
ALGAS achieves an increase in throughput of up to 18.8% to
145.9% compared to CAGRA, along with latency reductions
of approximately 17.7% to 61.8%.

D. Performance of Beam Extend

In Fig. 16, we utilize 8 CTAs in parallel to evaluate the
performance of beam extend. "Greedy Extend" indicates that
beam search is not employed. Utilizing beam extend to reduce
the number of sorting operations in the later stages of the
search significantly enhances throughput under high recall
while also reducing the average latency. This effect arises
from a decrease in the number of sorting operations needed
in the later stages of the search. Fig. 17 demonstrates the
percentage of time spent on sorting during the search process
before and after the implementation of beam extend, indicating
a reduction of approximately 14.2% to 25% in search time.

E. Performance of Parallel Processing on Host

In Fig. 18, we evaluate the performance of host parallel
processing. SIFT-1M benefits from enhancements in the host
thread. Due to its lower dimension, SIFT-1M experiences
more frequent I/O operations, leading to more pronounced
gains. Additionally, the implementation of local polling based
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on GDRCopy [27] utilizes less PCle bandwidth, resulting in
improved scalability.

VII. RELATED WORKS

ANNS can be broadly categorized into four types: Tree-
based Methods: These methods organize data through multi-
dimensional tree structures, making them suitable for low-
dimensional data (e.g. [9]-[11]). Locality-sensitive Hashing
based Methods: These methods use random projections to
map high-dimensional data into multiple buckets, with a higher
probability of similar data points being mapped to the same
bucket (e.g. [7], [8]). Quantization-based Methods: These
techniques compress high-dimensional vectors into lower-
dimensional codewords, thereby reducing both data dimension
and computational complexity (e.g. [12]-[14]). Graph-based
Methods: These methods construct a graph structure among
nodes, performing well in high-dimensional spaces and pro-
viding high search efficiency and recall rates (e.g. [15]-[20],
[32).

In GPU-accelerated graph ANNS, SONG [22] first intro-
duces the GPU to speed up search processes based on graphs.
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Compared to the CPU method, SONG significantly improves
throughput. However, it ignores the issues of latency and small
batch. GANNS [23] eliminates storage costs associated with
accessing metadata by introducing some redundant computa-
tions, and optimizes the operational overhead of graph ANNS
data structures on GPU. Additionally, GANNS proposed a
fast, GPU-friendly algorithm for constructing HNSW/NSW
graphs [17], [18], taking full advantage of GPU parallelism
for batch processing and merging, which significantly reduce

construction time. GGNN [24] presents a GPU-based method
for hierarchical graph construction and search, where sub-
graphs are constructed in parallel by partitioning the dataset.
The presence of sub-graphs enables concurrent searches across
these sub-graphs. CAGRA [25] proposes a fixed out-degree
graph optimized for GPU, implementing single-CTA and
multi-CTA methods in the search algorithm to accommodate
large batch and single query.

In disk-based implementations, notable examples include
DiskANN [16] and SPANN [33]. For GPU-based implemen-
tations, there are quantization-based methods, including Faiss
[21], Robustiq [34] Billion-Scale Similarity Search [35] and
RUMMY [36]. RTNN [37] proposes to formulate neighbor
search as a ray tracing problem. Bang [38] implements
DiskANN on GPU. Furthermore, there are ANNS implemen-
tations based on other devices, including DF-GAS [39], which
is based on FPGA, SmartANNs [40], which is based on Smart-
SSD and CXL-ANN [41], which utilizes CXL technology.
VDTuner obtains appropriate index parameters through op-
timization methods [42].

VIII. CONCLUSION

In this paper, we propose a general graph-based Approx-
imate Nearest Neighbor Search framework on GPU, named
ALGAS. ALGAS addresses the issue of query bubble under
small batch. By employing dynamic batching, it eliminates
the bubble between batches and utilizes a carefully designed
search algorithm to enhance performance for small batch. Our
experiments demonstrate that ALGAS performs comparably to
state-of-the-art industrial implementations across various small
batch sizes. Compared to other works, ALGAS can reduce
latency up to 21.9%-35.4%, throughput can increase up to
27.8%-55.2%.
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