
Dynamically Detect and Fix Hardness for Efficient
Approximate Nearest Neighbor Search

ZHIYUAN HUA, College of Computer Science, Nankai University, China

QIJI MO, College of Computer Science, Nankai University, China

ZEBIN YAO, College of Computer Science, Nankai University, China

LIXIAO CUI∗, College of Computer Science, Nankai University, China

XIAOGUANG LIU∗, College of Computer Science, Nankai University, China

GANG WANG, College of Computer Science, Nankai University, China

ZIJING WEI, Alibaba Group Holding Limited, China

XINYU LIU, Alibaba Group Holding Limited, China

TIANXIAO TANG, Alibaba Group Holding Limited, China

SHAOZHI LIU, Alibaba Group Holding Limited, China

LIN QU, Alibaba Group Holding Limited, China

Approximate Nearest Neighbor Search (ANNS) has become a fundamental component in many real-world

applications. Among various ANNS algorithms, graph-based methods are state-of-the-art. However, ANNS

often suffers from a significant drop in accuracy for certain queries, especially in Out-of-Distribution (OOD)

scenarios. To address this issue, a recent approach named RoarGraph constructs a bipartite graph between the

base data and historical queries to bridge the gap between two different distributions. However, it suffers from

some limitations: (1) Building a bipartite graph between two distributions lacks theoretical support, resulting

in the query distribution not being effectively utilized by the graph index. (2) Requires a sufficient number of

historical queries before graph construction and suffers from high construction times. (3) When the query

workload changes, it requires reconstruction to maintain high search accuracy.

In this paper, we first propose Escape Hardness, a metric to evaluate the quality of the graph structure

around the query. Then we divide the graph search into two stages and dynamically identify and fix defective

graph regions in each stage based on Escape Hardness. (1) From the entry point to the vicinity of the query.
We propose Reachability Fixing (RFix), which enhances the navigability of some key nodes. (2) Searching
within the vicinity of the query. We propose Neighboring Graph Defects Fixing (NGFix) to improve graph

connectivity in regions where queries are densely distributed. The results of extensive experiments show that

our method outperforms other state-of-the-art methods on real-world datasets, achieving up to 2.25× faster

∗
corresponding authors

Authors’ Contact Information: Zhiyuan Hua, huazy@nbjl.nankai.edu.cn, College of Computer Science, Nankai University,

Tianjin, China; Qiji Mo, moqj@nbjl.nankai.edu.cn, College of Computer Science, Nankai University, Tianjin, China; Zebin

Yao, yaozb@nbjl.nankai.edu.cn, College of Computer Science, Nankai University, Tianjin, China; Lixiao Cui, cuilx@nbjl.

nankai.edu.cn, College of Computer Science, Nankai University, Tianjin, China; Xiaoguang Liu, liuxg@nbjl.nankai.edu.cn,

College of Computer Science, Nankai University, Tianjin, China; Gang Wang, wgzwp@nbjl.nankai.edu.cn, College of

Computer Science, Nankai University, Tianjin, China; Zijing Wei, wzjrj28@outlook.com, Alibaba Group Holding Limited,

Beijing, China; Xinyu Liu, lxy264173@alibaba-inc.com, Alibaba Group Holding Limited, Beijing, China; Tianxiao Tang,

tianxiao.ttx@alibaba-inc.com, Alibaba Group Holding Limited, Beijing, China; Shaozhi Liu, shaozhi.liu@gmail.com, Alibaba

Group Holding Limited, Beijing, China; Lin Qu, xide.ql@taobao.com, Alibaba Group Holding Limited, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2025/12-ART318

https://doi.org/10.1145/3769783

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

https://orcid.org/0009-0006-3222-0544
https://orcid.org/0009-0003-6931-6396
https://orcid.org/0000-0001-7418-5691
https://orcid.org/0000-0002-4017-0974
https://orcid.org/0000-0002-9010-3278
https://orcid.org/0000-0003-0387-2501
https://orcid.org/0009-0005-8488-9314
https://orcid.org/0000-0002-0292-1351
https://orcid.org/0009-0007-2585-8803
https://orcid.org/0009-0008-1711-1328
https://orcid.org/0009-0004-2028-0780
https://orcid.org/0009-0006-3222-0544
https://orcid.org/0009-0003-6931-6396
https://orcid.org/0000-0001-7418-5691
https://orcid.org/0000-0001-7418-5691
https://orcid.org/0000-0002-4017-0974
https://orcid.org/0000-0002-9010-3278
https://orcid.org/0000-0003-0387-2501
https://orcid.org/0009-0005-8488-9314
https://orcid.org/0000-0002-0292-1351
https://orcid.org/0009-0007-2585-8803
https://orcid.org/0009-0008-1711-1328
https://orcid.org/0009-0004-2028-0780
https://doi.org/10.1145/3769783

318:2 Zhiyuan Hua et al.

search speed for OOD queries at 99% recall compared with RoarGraph and 6.88× faster speed compared with

HNSW. It also accelerates index construction by 2.35-9.02× compared to RoarGraph.

CCS Concepts: • Information systems→ Information retrieval query processing; Query optimization.

Additional Key Words and Phrases: Graph-based Index, High-Dimensional Vector, Approximate Nearest

Neighbor Search

ACM Reference Format:
Zhiyuan Hua, Qiji Mo, Zebin Yao, Lixiao Cui, Xiaoguang Liu, Gang Wang, Zijing Wei, Xinyu Liu, Tianxiao

Tang, Shaozhi Liu, and Lin Qu. 2025. Dynamically Detect and Fix Hardness for Efficient Approximate Nearest

Neighbor Search. Proc. ACM Manag. Data 3, 6 (SIGMOD), Article 318 (December 2025), 28 pages. https:

//doi.org/10.1145/3769783

1 INTRODUCTION
Nearest Neighbor Search (NNS) plays a crucial role in many real-world applications, such as large-

scale information retrieval [2, 8, 55], recommendation systems [13, 52], and Retrieval Augmented

Generation (RAG) in large language models (LLM) [18, 39, 76]. These applications require fast

response times, but exact NNS in high-dimensional spaces is unable to meet the practical demands

of current applications. As a result, most applications now rely on Approximate Nearest Neighbor

Search (ANNS) for efficient neighbor search. To ensure high accuracy while maintaining low latency

in ANNS, numerous methods have been proposed [4, 6, 7, 10–12, 19, 23–26, 28, 36, 41, 49, 50, 53,

63, 67, 71–73, 77–79]. Among these, graph-based methods currently achieve the best performance

in many scenarios [23, 49, 68].

However, graph-based methods often suffer from a significant drop in accuracy for certain

queries [40, 70] (referred to as ’hard queries’ in this paper). We also observed this phenomenon in

the real production environment of our e-commerce platform, which significantly affects the user

experience. The main reasons for the accuracy degradation are as follows: (1) Graph-based indexes

are typically approximations of Relative Neighborhood Graph (RNG) [35] or its variants [22, 23, 53],

and theoretical guarantees on search accuracy only hold when the queries overlap with or are

highly similar to the base data. However, in practice, not all queries are close to the base data, and

queries that are farther from the base data tend to have lower accuracy. (2) Graph-based methods

typically utilize a greedy search algorithm that explores only the closest vectors to the query at

each step. Without effective edges in the graph index, the search may only reach a subset of the

Nearest Neighbors (NNs), leading to a drop in accuracy. In particular, the drop in accuracy is more

frequent in cross-modal retrieval scenarios due to the existence of the modality gap [42]. This

gap causes the distributions of query vectors (e.g., texts) and base vectors (e.g., images) to differ

significantly (i.e., query vectors are Out-of-Distribution (OOD)), making queries distant from the

base data [11]. (The formal definition of OOD queries will be provided in Section 2.)

To improve index performance on hard queries, especially in OOD scenarios, recent methods [11,

34] aim to bridge the distribution gap between base data and queries. Among them, RoarGraph [11]

is a representative method. The index construction method of RoarGraph consists of the following

steps: (1) RoarGraph builds a bipartite graph between the base data 𝑋 and the historical query set

𝑄 to connect the two distributions. (2) It then projects the query points onto the base data (using

the nearest neighbor of query to replace the query points) to avoid adding query points directly

into the graph. (3) Finally, it enhances graph connectivity by assigning more neighbors to each

node. RoarGraph constructs a high-quality graph index through the above approach, which helps

greedy search discover more NNs.

Despite the significant performance improvements achieved by RoarGraph, it still has the

following limitations: (1) Building a bipartite graph between two distributions lacks theoretical

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

https://doi.org/10.1145/3769783
https://doi.org/10.1145/3769783

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:3

𝑞 𝑞
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

No matter from

which direction

the search enters

the query's vicinity,

all its nearest

neighbors will be

discovered.

𝑒𝑝1

𝑒𝑝2

(a) RoarGraph (b) NGFix (c) Performance

Fig. 1. Comparison between RoarGraph and Our Methods. (a) Example of RoarGraph. (b) Example of NGFix.
(c) Query accuracy under same average latency in LAION10M[59] and WebVid2.5M[8].

support. As a result, some effective edges are overlooked by RoarGraph. As shown in Figure 1a,

RoarGraph fails to fully utilize the information provided by historical queries, resulting in some

nodes not being connected to their most effective neighbors when compared to Figure 1b. (2) It

often relies on a substantial number of historical queries during the graph construction phase to

achieve satisfactory performance. It also requires calculating the exact 𝑘NN for each historical

query during graph construction, making it suffer from long construction times. (3) When the query

workload changes, RoarGraph requires a full reconstruction to maintain accuracy. However, in

real-world production environments, the hard queries are constantly changing, making it difficult

for RoarGraph to adapt to such changes. For example, on our e-commerce platform, a comparison

between query workloads from two different time periods shows that approximately 10% of the

queries in the newer period are far from the distribution of the previous queries.

To address the limitations above, the key idea of our methods is to leverage online queries to

dynamically fix defects of the graph in the regions where the queries are densely distributed. Due to

the varying hardness of queries on a given graph index [40, 70], we propose Escape Hardness (EH),
a theoretically guaranteedmethod for quantifying query hardness. Following previous work [65, 70],

we divide the search into two phases: (1) From the entry point to the vicinity of the query. (2)

Searching within the vicinity of the query. For most queries, greedy search easily enters the second

phase [70] (solution of some counterexamples will be introduced later) but often reaches only a

part of the NNs. Therefore, we primarily measure the quality of the graph structure around each

query. To avoid the impact of the entry point, we use a matrix to represent the difficulty of the

query, where each element of the matrix indicates the difficulty of exploring from one point around

the query to another point. Meanwhile, for a given query, if the values in the matrix are all small,

the search accuracy will be guaranteed.

Based on EH, we propose Reachability Fixing (RFix) and Neighboring Graph Defects Fixing
(NGFix) to dynamically fix defects of the graph. (1) RFix mainly focuses on the first phase of the

search. For a historical query, if the search does not reach the query’s vicinity, RFix first obtains the

approximate nearest neighbor found by the search, and then enhances the navigation performance

of the approximate nearest neighbor point by expanding its candidate neighbor set. (2) NGFix

mainly focuses on the quality of the graph index in the second phase of the search. Guided by

EH, it adds effective edges around the query to ensure that for each historical query, the difficulty

of reaching other points from any point around the query is low. As shown in Figure 1b, NGFix

ensures that greedy search finds all NNs of the query from any direction. After applying NGFix and

RFix, we guarantee the search accuracy for historical queries. The results of experiments shown in

Figure 1c demonstrate that our method also performs well on test queries (different from historical

queries). Meanwhile, to reduce the overhead of index construction, we replace exact 𝑘NN with

approximate 𝑘NN during NGFix and RFix. Our contributions are summarized as follows:

• We first provide some theoretical analysis of the relationship between query accuracy and

the local graph structure around the query. We then propose Escape Hardness to measure the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

318:4 Zhiyuan Hua et al.

difficulty of accessing other points from a given point near the query, thereby measuring the

quality of the graph structure around the query. The results of experiments show that Escape

Hardness is highly correlated with the actual query accuracy.

• We propose NGFix and RFix, using Escape Hardness in combination with the query distribution

to dynamically detect and fix the defective areas of the graph.

• We conduct comprehensive experiments on real-world datasets, and the results demonstrate that

our method significantly outperforms existing methods in both OOD and In-Distribution (ID)

workloads, achieving up to 2.25× faster search speed for OOD queries at a 99% recall rate and

accelerating index construction by 2.35-9.02×. Meanwhile, compared to RoarGraph, we achieve

the same search efficiency using only 8%-30% of the historical queries it requires.

• We release a new cross-modal dataset to facilitate research in ANNS, which is collected from the

real-world production environment of a large-scale e-commerce platform. We also provide a

well-optimized C++ library for ANN query based on our method
1
.

2 PRELIMINARIES
ANNS. In this paper, we let 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} ⊆ R𝑑 be a finite set of 𝑛 vectors in a 𝑑-dimensional

space. Let 𝛿 (·, ·) denote the distance between two points and𝑁𝑖,𝑞 denote the 𝑖-th NN of 𝑞. For a given

query 𝑞 ∈ R𝑑 , the objective of the Approximate 𝑘 Nearest Neighbor Search (A𝑘NNS) algorithm

is to find a point set 𝑆 , where 𝑆 satisfies |𝑆 | = 𝑘 , 𝛿 (𝑥, 𝑞) ≤ (1 + 𝜖)𝛿 (𝑥 ′, 𝑞) for 𝑥 ∈ 𝑆 , 𝑥 ′ ∈ 𝑋 \ 𝑆 ,
and 𝜖 is a small constant satisfied 𝜖 ≥ 0. We usually use recall and relative distance error (rderr)

to evaluate the accuracy of query 𝑞. For a query 𝑞, 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 = |𝑆 ∩ 𝐾𝑁𝑁 (𝑞) |/𝑘 , where 𝐾𝑁𝑁 (𝑞)
represents the exact 𝑘NN of the query 𝑞; 𝑟𝑑𝑒𝑟𝑟@𝑘 = 𝑎𝑣𝑔𝑘𝑖=1 (𝛿 (𝐴𝑁𝑁𝑖,𝑞, 𝑞)/𝛿 (𝑁𝑖,𝑞, 𝑞) − 1), where
𝐴𝑁𝑁𝑖,𝑞 denotes the 𝑖-th approximate NN of 𝑞.

Algorithm 1 : Greedy Search

Input : Graph index 𝐺 , query 𝑞, result size 𝑘 , entry point 𝑒𝑝 , search list size 𝐿 ≥ 𝑘 .
Output : 𝑘NN of 𝑞

1 Initialize a candidate set 𝑪 ← {𝑒𝑝} and a result set 𝑹 ← {𝑒𝑝}
2 mark 𝑒𝑝 as visited

3 while 𝑪 ≠ ∅ do
4 𝑢 ← pop an element from 𝑪 with minimum 𝛿 (𝑢, 𝑞)
5 𝑑𝑚𝑎𝑥 ←𝑚𝑎𝑥𝑥∈𝑹𝛿 (𝑥, 𝑞) // If 𝑹 = ∅, 𝑑𝑚𝑎𝑥 ← 𝑖𝑛𝑓

6 if 𝛿 (𝑢, 𝑞) > 𝑑𝑚𝑎𝑥 then break

7 for 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝐺,𝑢) and 𝑣 has not been visited do
8 mark 𝑣 as visited

9 if 𝛿 (𝑣, 𝑞) < 𝑑𝑚𝑎𝑥 or |𝑹 | < 𝐿 then
10 𝑹 ← 𝑹 ∪ {𝑣}, 𝑪 ← 𝑪 ∪ {𝑣}
11 while |𝑹 | > 𝐿 do
12 pop an element 𝑥 from 𝑹 with maximum 𝛿 (𝑥, 𝑞)
13 𝑑𝑚𝑎𝑥 ←𝑚𝑎𝑥𝑥∈𝑹𝛿 (𝑥, 𝑞)

14 return closest 𝑘 points in 𝑹

Graph Index.We use a directed graph 𝐺 = (𝑉 , 𝐸) to represent a graph index, where 𝑉 is the

set of vertices, and each vector in 𝑋 corresponds to a vertex in 𝑉 . The set 𝐸 represents the edges,

where each edge (𝑢, 𝑣) ∈ 𝐸 indicates a proximity relationship between vertices 𝑢 and 𝑣 . We let

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝐺, 𝑣) denote the set of neighbors of vertex 𝑣 in graph 𝐺 .

Greedy Search. We typically use Greedy Search for ANNS on graph indexes. The details of the

algorithm are presented in Algorithm 1. We begin by initializing a candidate set 𝑪 and a result set

1
https://github.com/yuhuifishash/NGFix

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

https://github.com/yuhuifishash/NGFix

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:5

𝑹, where 𝑹 has a maximum length of 𝐿 (line 1). During the search, at each step, we select the point

from 𝑪 that is closest to the query 𝑞 and check its neighbors. If any neighbor is closer to the query

than a point in 𝑹, we add it to both 𝑹 and 𝑪 (lines 7-13). The search terminates when the distance

from the current point to 𝑞 is greater than that of any point in 𝑹 or when the 𝑪 becomes empty

(lines 3-6). Finally, the algorithm returns the 𝑘 closest points to the 𝑞 from 𝑹. Since this method is

an approximate algorithm, Greedy Search often terminates after exploring only a portion of the

query’s nearest neighbors for certain queries, leading to reduced search accuracy. A common and

simple approach to address this is to increase the search list size 𝐿, but this will lead to an increase

in search latency. A more effective solution is to design an improved graph index that guides the

greedy search more effectively, which is the main focus of this paper.

OOD Queries. In cross-modal ANNS, the base and query vectors are typically generated by

a multimodal model (e.g., CLIP [56]). Taking image-text retrieval as an example, image and text

embeddings are generated by different encoders, and then these embeddings are mapped into a

shared space through contrastive learning [56]. However, there exists a modality gap between

image and text vectors, so their distributions are different. A query is considered OOD if its modality

differs from that of the base data. We can use the Wasserstein distance [37] to mathematically

measure the difference between the two distributions and use the Mahalanobis distance [47] to

measure the distance from a vector to a distribution [11].

3 RELATEDWORK
The algorithm of ANNS can be broadly categorized into tree-based [4, 41, 66], hashing-based [14, 63,

72, 79], quantization-based [3, 24, 26, 27, 29, 36, 50], and graph-based methods [11, 23, 31, 48, 49, 61].

Tree-based methods perform well in low-dimensional datasets, but their search performance often

degrades in high-dimensional spaces due to the curse of dimensionality. Hashing-based methods

provide theoretical guarantees on search results, but in practice, it is difficult to maintain high search

efficiency while achieving high accuracy. Quantization-based methods compress high-dimensional

vectors into short quantization codes, significantly reducing the cost of distance computation.

Graph-based methods achieve the best time-accuracy trade-off across various scenarios. Moreover,

they can be combined with other methods to achieve better overall performance [21, 28, 45, 78].

Since our method focuses on optimizing graph-based indexes, we next provide an overview of

existing graph-based techniques.

Most state-of-the-art graph indexes are based on the Delaunay Graph [15] (DG) and the Relative

Neighborhood Graph (RNG) [35]. DG is the dual graph of the Voronoi diagram [5]. In a DG, two

vertices are connected by an edge if and only if there exists a circle passing through these two

points, with no other points inside the circle. DG guarantees that for any given query 𝑞, a Greedy

Search will be able to find 𝑁1,𝑞 [49]. However, DG becomes a complete graph in high-dimensional

space [30], resulting in search performance similar to brute-force search. RNG is a subgraph of DG.

If an edge is the longest edge of any triangle formed by vertices in base data 𝑋 , that edge is not

included in the RNG. RNG guarantees that the average degree of each point is a small constant

when points in 𝑋 are uniformly distributed, but it does not ensure the accuracy of the search. Later,

Fu et al. [23] introduced the Monotonic Relative Neighborhood Graph (MRNG). MRNG preserves

the property of constant average degree in RNG and guarantees that if query 𝑞 ∈ 𝑋 , a Greedy
Search will find 𝑁1,𝑞 definitely. However, there is no theoretical guarantee for queries where 𝑞 ∉ 𝑋 .

Subsequently, Fu et al. [22] extended MRNG to SSG. It provides some probabilistic guarantees

for queries 𝑞 where 𝑞 ∉ 𝑋 under random distributions. Recently, Peng et al. [53] introduced 𝜏-

MG, which guarantees that if 𝛿 (𝑁1,𝑞, 𝑞) < 𝜏 , Greedy Search can find 𝑁1,𝑞 . Due to the high graph

construction overhead of the graph mentioned above, which makes them hard to use in practice,

most state-of-the-art graph indexes are approximations of these algorithms. HNSW [49] uses the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

318:6 Zhiyuan Hua et al.

𝑞

ep

𝑝ℎ𝑎𝑠𝑒 1
𝑝ℎ𝑎𝑠𝑒 2

(a) search phases

Text-to-
Image10M

LAION10M

WebVid2.5M

Main
Search

2.0%

0.5%

0.1%

6%

44.9%

63.6%

73%

17.5%

53.1%

35.9%

26.9%

76.5%

recall@100=0 0<recall@100<0.8 recall@100 ≥ 0.8

(b) proportion of different queries

Fig. 2. (a) The two phases of Greedy Search on the graph. (b) The proportion of queries with different recall
levels.

RNG rule to sparsify the graph. It also uses a hierarchical structure, but the effect of this structure is

limited in high-dimensional space [43, 69]. NSG, NSSG, and 𝜏-MNG are approximations of MRNG,

SSG, and 𝜏-MG, respectively. They primarily consider the properties of these graphs in a local

neighborhood around each point, thereby reducing the indexing construction overhead. However,

these indexes tend to perform poorly when the query is far from the base data (e.g., certain ID

queries or OOD queries).

To overcome the issues of hard queries, especially OOD queries, RobustVamana [34] adds query

vectors from other distributions into the graph and connects edges between the query and base

points, where these query points serve as navigators. This partially mitigates the accuracy loss

caused by OOD queries. However, these points also extend the search path, leading to only a small

overall improvement. Chen et al. [11] proposed RoarGraph, which establishes a connection between

the two distributions and avoids directly inserting query points into the graph by projecting them

onto the base data. This approach achieves significantly better performance than existing graph

indexes.

There are also some other algorithms [10, 12, 19, 25, 40, 45, 46, 54, 57] that optimize the graph

search process, such as iQAN [54], which improves the performance and accuracy of ANNS by

intra-query parallelism. LSH-APG [78] and some other works [45, 57] focus on solving the entry

point selection problem. Additionally, some approaches [12, 16, 25] aim to optimize the distance

calculations during the search process.

4 ANALYSIS
In this section, we mainly discuss the theoretical foundation for constructing graphs based on

query distributions, along with preliminary experiments that support our design.

To provide theoretical support, we first explore the relationship between the graph structure

and accuracy for a given query. Following previous studies [65, 70], we divide the search into two

phases: (1) searching from the entry point to the vicinity of the query, and (2) searching within

the vicinity of the query. Greedy Search can easily reach the second phase, but it often ends up

retrieving only a subset of the nearest neighbors due to the lack of effective edges in the graph

index [70] (Figure 2a illustrates an example of two search phases). Our experiments demonstrate

that this conclusion holds for OOD queries as well. Figure 2b shows the proportion of queries with

different recall levels when using HNSW as the graph index in four cross-modal datasets (the search

list size is fixed at 100). For most queries, Greedy Search successfully reaches the query vicinity (i.e.,

recall@100 ≠ 0). Therefore, we first focus on the case where the entry point is close to the query

(Other cases will be discussed in Section 5.4). Subsequently, since Greedy Search only explores

points closest to the query, we only need to consider the graph structure in the small region around

the query. To better describe the area around the query, we first define the graph structure around

a query [65], which consists of the query’s NNs and the edges associated with them:

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:7

𝑞
𝑁𝐺5,𝑞

Vertex of 𝑁𝐺5,𝑞
Edge of 𝑁𝐺5,𝑞

(a) 𝑁𝐺5,𝑞

recall@30 = 0.9

30NN of query

recall@30 = 0.6

query

(b) 𝑁𝐺30,𝑞 in real-world dataset

Fig. 3. (a) A toy example of 𝑁𝐺5,𝑞 . (b) 𝑁𝐺30,𝑞 of HNSW’s base layer with two different OOD queries in
LAION10M.

0.0 0.2 0.4 0.6 0.8 1.0
Average recall@100 with 5 random ep

0

20

40

60

80

100

R
ea

ch
ab

le
 p

oi
nt

s ID Queries (Image)
OOD Queries (Text)

(a) Correlation on LAION10M

5 15 25 35 45 55 65 75 85 95
Average reachable points

10 1

10 2

C
ou

nt
s o

f q
ue

rie
s ID Queries (Image)

OOD Queries (Text)

(b) Counts on LAION10M

Fig. 4. Randomly sampled 1000 ID queries and 1000 OOD queries in LAION10M. The graph index is the base
layer of HNSW. (a) The correlation between query’s recall@100 with a search list size of 100 and its average
number of reachable points in 𝑁𝐺100,𝑞 . (b) Counts of queries with different average numbers of reachable
points in 𝑁𝐺100,𝑞 .

DEFINITION 1. (𝑆-Neighboring Graph with query 𝑞 (𝑁𝐺𝑆,𝑞)). Consider a directed graph index
𝐺 = (𝑉 , 𝐸) and a query 𝑞, and define 𝑉𝑆,𝑞 = {𝑁1,𝑞, 𝑁2,𝑞, ..., 𝑁𝑆,𝑞}. Then 𝑁𝐺𝑆,𝑞 = (𝑉𝑆,𝑞, 𝐸𝑆,𝑞) is the
subgraph induced in 𝐺 by 𝑉𝑆,𝑞 , where 𝐸𝑆,𝑞 is the edge set of the subgraph.

Figure 3a shows an example of 𝑁𝐺5,𝑞 , where the orange vertices form𝑉5,𝑞 , and the orange edges

form 𝐸5,𝑞 . Figure 3b illustrates 𝑁𝐺30,𝑞 for two OOD queries on the LAION10M [59] dataset, using an

index constructed with HNSW’s base layer. To facilitate visualization, we applied Multidimensional

Scaling (MDS) [64] to project the high-dimensional data to two dimensions. The recall@30 shown

in the figure represents the results of Greedy Search with a randomly selected entry point and a

search list size of 30. It can be observed that for queries with poor accuracy, 𝑁𝐺30,𝑞 exhibits weaker

connectivity and contains numerous isolated points.

We then examine the relationship between 𝑁𝐺𝑆,𝑞 and query accuracy from two perspectives:

(1) A high-quality 𝑁𝐺𝑆,𝑞 guarantees high query accuracy; (2) A low-quality 𝑁𝐺𝑆,𝑞 can easily lead

to a significant drop in accuracy. For the first perspective, we introduce the following theorem
to show that if base points 𝑢 and 𝑣 are connected in 𝑁𝐺𝑆,𝑞 , then Greedy Search starting from 𝑢 is

guaranteed to reach 𝑣 when the search list size 𝐿 ≥ 𝑆 . All the proof in this paper and more details

can be found in Appendix B
2
.

THEOREM 1. For a directed graph index𝐺 = (𝑉 , 𝐸) and a query 𝑞. If 𝑁𝑖,𝑞 can reach 𝑁 𝑗,𝑞 in 𝑁𝐺𝑆,𝑞
(1 ≤ 𝑖, 𝑗 ≤ 𝑆). The Algorithm 1 will always visit 𝑁 𝑗,𝑞 when query = 𝑞, 𝑒𝑝 = 𝑁𝑖,𝑞 and 𝐿 ≥ 𝑆 .

Theorem 1 demonstrates that a 𝑁𝐺𝑆,𝑞 with strong connectivity can guarantee search accuracy.

Furthermore, for the second perspective, our experiments show that poor connectivity in the

𝑁𝐺𝑆,𝑞 significantly degrades search accuracy. We measure the connectivity of 𝑁𝐺𝑆,𝑞 by calculating

the average number of points that can be reached starting from a randomly chosen point in 𝑁𝐺𝑆,𝑞 .

Figure 4a shows the correlation between query accuracy and the average number of reachable

2
https://github.com/yuhuifishash/NGFix/blob/main/appendix.pdf

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

https://github.com/yuhuifishash/NGFix/blob/main/appendix.pdf

318:8 Zhiyuan Hua et al.

… 𝑥1

𝑥𝑁

Base Data 𝑿

Query Set 𝐐

Graph Index G 𝑞1

𝑞𝑁 for each query 𝑞

(b) Compute Ground Truth (c) Compute Hardness (d) NGFix

𝑵𝑮𝟏𝟏,𝒒

…

Online
𝑛6

𝑛1

𝑛3

𝑛2

𝑛4

𝑛5
𝑛7

𝑛9

𝑛8

𝑛10
𝑛11

𝑞

(a) Build Base Graph

𝑛6
𝑛1

𝑛3

𝑛2

𝑛4

𝑛5𝑛7

𝑛9

𝑛8

𝑛10

𝑞

𝑛11 ……

𝑞

𝑛2
𝑛3𝑛4

𝑛1

additional edge
base graph edge

𝐸𝐻 n1, 𝑛3, 𝑞, 𝐺 = 10
𝐸𝐻 𝑛1, 𝑛5, 𝑞, 𝐺 = 7

Fig. 5. An overview of Neighboring Graph Defects Fixing with 𝑁𝑞 = 4, 𝐾ℎ = 4.

points in 𝑁𝐺100,𝑞 , demonstrating that insufficient connectivity in the 𝑁𝐺𝑆,𝑞 can lead to a substantial

drop in search accuracy. Moreover, it can be observed that a small number of queries have a strongly

connected 𝑁𝐺𝑆,𝑞 , but their average recall@100 is still below 1. This is because for these queries, if

the search starts from certain entry points, it may fail to reach the neighborhood of the query (i.e.,

fail to enter the second phase of the search).

Connectivity of 𝑁𝐺𝑆,𝑞 in Real-World Datasets. Figure 4b shows the connectivity of 𝑁𝐺100,𝑞

in LAION10M. We observe that the connectivity of their 𝑁𝐺100,𝑞 varies significantly for both ID

and OOD queries. Although the connectivity of 𝑁𝐺100,𝑞 for OOD queries is poorer compared to

that of ID queries in general, there are still some special cases: approximately 30% of OOD queries

have a highly connected 𝑁𝐺100,𝑞 , while about 10% of ID queries have an 𝑁𝐺100,𝑞 with very few

edges. This means that when using queries to guide graph construction, we should focus on the

hard queries with low-quality 𝑁𝐺𝑆,𝑞 .

Reason for Using Historical Queries. Although the graph structure around the query impacts

the query accuracy, the following theorem we propose demonstrates that for any query and 𝑆 ,

ensuring strong connectivity in 𝑁𝐺𝑆,𝑞 is impractical.

THEOREM 2. Given a base data set 𝑋 and the DG constructed from the points in 𝑋 . If any edge of
DG is removed, there exists a query 𝑞 such that 𝑁𝐺2,𝑞 contains only two isolated nodes.

Since DG becomes a complete graph in high-dimensional spaces [30], ensuring strong connectiv-

ity for the 𝑁𝐺𝑆,𝑞 of all queries is impractical in the real world. Therefore, the method we propose

below leverages the historical queries to achieve strong connectivity for the 𝑁𝐺𝑆,𝑞 in regions where

queries are densely distributed.

5 DESIGN
The analysis in Section 4 can be summarized as follows: (1) The difficulty of a query is largely

influenced by the quality of the graph structure around it, and the difficulty varies significantly

across queries. So we first propose EH to measure the quality of the graph structure around a

query in this section. (2) We need to utilize historical queries to enhance graph connectivity in

regions where queries are densely distributed. So we then propose NGFix, using EH in combination

with historical queries to guide us in fixing the defective areas of the graph. Figure 5 illustrates

the overview of NGFix. We begin by constructing a base graph (Figure 5a). For each query 𝑞, we

compute its exact𝐾NN (Figure 5b) and then calculate EH for 𝑞 (Figure 5c). Finally, we add additional

edges in the vicinity of 𝑞 to fix the defective regions of the graph (Figure 5d). (3) There still exist

a few queries for which the search stops in the first phase and cannot reach their vicinity. So we

propose RFix to enhance the navigability of some points.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:9

𝑛1

𝑁𝐺1,𝑞

𝑞

𝑁𝐺2,𝑞

𝑞 𝑛2

𝑛3
𝑛1

𝑁𝐺3,𝑞

𝑞 𝑛2

𝑛1

𝑁𝐺4,𝑞

𝑞
𝑛2

𝑛3 𝑛4𝑞

𝑒𝑝(𝑛8)

not visited
visited

𝑛2
𝑛1

𝑛9

𝑛4

𝑛5
𝑛7

𝑛7𝑛1 𝑛4 𝑛5 𝑛8

Result Set

𝑛9

𝛿 𝑛9, 𝑞 > 𝛿(𝑛7, 𝑞)

Search ends

𝐸𝐻(𝑛1, 𝑛2, 𝑞, 𝐺)

𝑛3𝑛6

(a) An intuitive explanation of EH (b) Compute EH

ℍ2,1 = 4

ℍ3,1 = 4

ℍ2,4 = 4
……

Fig. 6. Example of Escape Hardness.

5.1 Preprocess
First, we need to construct any type of graph index as a base graph, such as HNSW, NSG, etc. Then,

for each query, we need to compute its exact 𝑘NN. We have the following methods for calculating

𝑘NN:

• Collect the queries and process them after accumulating a certain amount (e.g., 512), and then

transform the computation of exact 𝑘NN into matrix multiplication, and accelerate it using

matrix multiplication optimizations [17].

• Utilize the previously constructed graph index to perform Greedy Search, but increase the search

list size to improve the accuracy of approximate 𝑘NN. This method is significantly faster than

brute-force computation, but may slightly affect the ground truth quality of the queries. The

results of experiments in Section 6.4 demonstrate that this method has little impact on the final

graph’s quality.

5.2 Escape Hardness
To better measure the quality of the graph structure around a query, we introduce Escape Hardness.

It focuses on measuring the difficulty of reaching one point from another around the query using

Greedy Search.

DEFINITION 2. (Escape Hardness (EH)). Given a directed graph index 𝐺 = (𝑉 , 𝐸) and a query 𝑞,
let 𝑃 (𝑢, 𝑣,𝐺) denotes the set of all paths from vertex 𝑢 to vertex 𝑣 in graph𝐺 and 𝐹𝑢,𝑞 denote the point
𝑢 is the 𝐹𝑢,𝑞-th NN of 𝑞, the Escape Hardness of query 𝑞 from vertex 𝑢 to vertex 𝑣 is defined as:

𝐸𝐻 (𝑢, 𝑣, 𝑞,𝐺) = 𝑚𝑖𝑛
𝑝∈𝑃 (𝑢,𝑣,𝐺)

𝑚𝑎𝑥
𝑥∈𝑝

𝐹𝑥,𝑞

and we define the Escape Hardness Matrix H ∈ {1, 2, ..., |𝑋 |}𝑁𝑞×𝑁𝑞 where H𝑖, 𝑗 = 𝐸𝐻 (𝑁𝑖,𝑞, 𝑁 𝑗,𝑞, 𝑞,𝐺)
and 𝑁𝑞 represents the number of nearest neighbors considered for query 𝑞.

The definition of 𝐸𝐻 (𝑢, 𝑣, 𝑞,𝐺) illustrates the hardness of searching from a point 𝑢 to reach

𝑣 using Greedy Search. The validity of EH is primarily supported by the following corollary of

Theorem 1. EH establishes an upper bound on the search list size required to successfully reach a

point from another point around the query.

COROLLARY 1. For a directed graph index 𝐺 = (𝑉 , 𝐸) and a query 𝑞. the Algorithm 1 will always
visit 𝑁 𝑗,𝑞 when query = 𝑞, 𝑒𝑝 = 𝑁𝑖,𝑞 and 𝐿 ≥ 𝐸𝐻 (𝑁𝑖,𝑞, 𝑁 𝑗,𝑞, 𝑞,𝐺).

Example. Figure 5c is an example for EH: For simplicity, we use 𝑛𝑖 to represent 𝑁𝑖,𝑞 in the

figure. For 𝐸𝐻 (𝑛1, 𝑛3, 𝑞,𝐺), without considering the detour through 𝑛6, there are mainly two paths

from 𝑛1 to 𝑛3: 𝑝1 = {𝑛1, 𝑛10, 𝑛9, 𝑛8, 𝑛3} and 𝑚𝑎𝑥𝑥∈𝑝1𝐹𝑥,𝑞 = 10, 𝑝2 = {𝑛1, 𝑛10, 𝑛11, 𝑛9, 𝑛8, 𝑛3} and
𝑚𝑎𝑥𝑥∈𝑝2𝐹𝑥,𝑞 = 11. Since𝑚𝑎𝑥𝑥∈𝑝1𝐹𝑥,𝑞 is smaller, 𝐸𝐻 (𝑛1, 𝑛3, 𝑞,𝐺) = 10, and H1,3 = 10. Intuition. In
Figure 6a, we take 𝑛8 as the entry point and aim to recall the top-2 NN of 𝑞 using a result set of size 5

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

318:10 Zhiyuan Hua et al.

(i.e., 𝐿 = 5 in Algorithm 1). After the search visits 𝑛1, the result set becomes full. Since 𝑛9 is far from

the query, it will be removed from the result set. Then the greedy search converges prematurely. It

will not go back to 𝑛9 and expand its neighbors, resulting in recall@2 = 50%. Here, EH measures the

difficulty of reaching 𝑛2 from 𝑛1 along the search path. Specifically, 𝐸𝐻 (𝑛1, 𝑛2, 𝑞,𝐺) = 9, meaning

the critical point (𝑛9) hindering the search ranks 9th in terms of distance to 𝑞. In this example,

increasing 𝐿 to 6 would allow the search to reach 𝑛2. However, it is generally difficult to determine

the exact 𝐿 needed to ensure a certain point is visited, so EH provides an upper bound on 𝐿.

To compute EH, we first present the following theorem:

THEOREM 3. If points 𝑁𝑖,𝑞 and 𝑁 𝑗,𝑞 satisfy the condition that 𝑁𝑖,𝑞 cannot reach 𝑁 𝑗,𝑞 in 𝑁𝐺𝑆−1,𝑞
but can reach 𝑁 𝑗,𝑞 in 𝑁𝐺𝑆,𝑞 , then 𝐸𝐻 (𝑁𝑖,𝑞, 𝑁 𝑗,𝑞, 𝑞,𝐺) = 𝑆 and H𝑖, 𝑗 = 𝑆 .

Algorithm 2 : Compute Hardness

Input : Query 𝑞, 𝑁𝐺𝑀𝑎𝑥𝑆,𝑞 = (𝑉𝑀𝑎𝑥𝑆,𝑞, 𝐸𝑀𝑎𝑥𝑆,𝑞), 𝑁𝑞
Output : The Escape Hardness Matrix H

1 Initialize a matrix 𝑓 ∈ {0, 1}𝑀𝑎𝑥𝑆×𝑀𝑎𝑥𝑆 with all elements set to 0

2 Set all elements of H to∞
3 Let 𝑓𝑖, 𝑗 ← 1 if (𝑖, 𝑗) ∈ 𝐸𝑀𝑎𝑥𝑆,𝑞 or 𝑖 = 𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑞
4 Let H𝑖, 𝑗 ←𝑚𝑎𝑥 (𝑖, 𝑗) if 𝑓𝑖, 𝑗 = 1 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑞
5 for ℎ ← 1 to𝑀𝑎𝑥𝑆 do // add points to subgraph.
6 for 𝑖 ← 1 to𝑀𝑎𝑥𝑆 do
7 𝐶 ← ∅ // Save the connectivity-changed points.
8 for 𝑗 ← 1 to𝑀𝑎𝑥𝑆 do // Floyd-Algorithm.
9 𝑓𝑖, 𝑗 ← 𝑓𝑖, 𝑗 𝑜𝑟 (𝑓𝑖,ℎ 𝑎𝑛𝑑 𝑓ℎ,𝑗)

10 if 𝑓𝑖, 𝑗 changed then 𝐶 ← 𝐶 ∪ { 𝑗}
11 if 𝑖 ≤ 𝑁𝑞 then
12 for 𝑢 ∈ 𝐶 and 𝑢 ≤ 𝑁𝑞 do
13 H𝑖,𝑢 =𝑚𝑎𝑥 (𝑖, 𝑢, ℎ)

14 return H

Due to THEOREM 3, when computing EH, we start with 𝑆 = 1 and incrementally consider

𝑁𝐺𝑆,𝑞 in ascending order of 𝑆 . For the subgraph 𝑁𝐺𝑆−1,𝑞 , we add the point 𝑁𝑆,𝑞 and its associated

edges to construct 𝑁𝐺𝑆,𝑞 . If the connectivity from points 𝑁𝑖,𝑞 to 𝑁 𝑗,𝑞 changes after adding point

𝑁𝑆,𝑞 , then H𝑖, 𝑗 = 𝑆 . The connectivity updates after each addition are computed using a modified

Floyd-Warshall algorithm [20]. The calculation of EH is finished when 𝑁𝑖,𝑞 and 𝑁 𝑗,𝑞 are reachable

from each other for any 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑞 . We denote the value of 𝑆 at the time the computation is

completed as𝑀𝑎𝑥𝑆 , also meaning that the subgraph at this point is 𝑁𝐺𝑀𝑎𝑥𝑆,𝑞 . However, based on

the previous analysis, the connectivity of the graph around hard queries tends to be poor, often

resulting in a significantly large value of 𝑀𝑎𝑥𝑆 . Therefore, to efficiently compute EH, we limit

𝑀𝑎𝑥𝑆 to a constant multiple of 𝑁𝑞 (e.g.,𝑀𝑎𝑥𝑆 ≤ 5𝑁𝑞). If 𝑁𝑖,𝑞 and 𝑁 𝑗,𝑞 are still not connected at this

point, we consider H𝑖, 𝑗 to be infinite. Figure 6b shows an example of computing EH: After adding

𝑛1 and 𝑛2, none of the nodes can reach each other, so we cannot compute any EH now. When 𝑛3 is

added, 𝑛1 becomes able to reach 𝑛3, so we set H1,3 = 3. After adding 𝑛4, 𝑛2 can reach 𝑛1 through 𝑛4,

so H2,1 = 4. For other node pairs that also become reachable via 𝑛4, their EH values are also set to 4.

The details of the algorithm are shown in Algorithm 2. To accelerate the computation, we directly

set𝑀𝑎𝑥𝑆 to 5𝑁𝑞 and preprocess 𝑁𝐺𝑀𝑎𝑥𝑆,𝑞 before calculation. The matrix 𝑓 represents the transitive

closure, and 𝑓𝑖, 𝑗 indicates whether 𝑁𝑖,𝑞 can reach 𝑁 𝑗,𝑞 (line 1). Then we set the initial values of

𝑓 and H based on the edges in 𝑁𝐺𝑀𝑎𝑥𝑆,𝑞 (lines 2-4). The loop in line 5 adds a new point in each

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:11

𝑛1

𝑛4

𝑛3

𝑛5

𝑛6

𝑛7

𝑛2
𝑞

𝑛8

(a) RNG

𝑛1

𝑛4

𝑛3

𝑛5

𝑛6

𝑛7

𝑛2
𝑞

𝑛8𝑛9

(b) Random

𝑛1

𝑛4

𝑛3

𝑛5

𝑛6

𝑛7

𝑛9

𝑛2
𝑞

𝑛8

(c) NGFix

Fig. 7. The results of different methods for fixing the 𝑁𝐺8,𝑞 , where blue edges represent the edges of the
base graph and purple edges represent the additional edges we add. (a) Reconstructing the RNG graph in the
𝑁𝐺8,𝑞 . (b) Randomly adding edges until any two points in the 𝑁𝐺8,𝑞 are 𝐾ℎ-reachable (𝐾ℎ = 9). (c) NGFix
with 𝑁𝑞 = 8 and 𝐾ℎ = 9.

iteration. After adding points, we perform the Floyd algorithm to compute the connectivity of the

new graph and store the points where connectivity changes (lines 6-10). Finally, we update the

matrix H based on the changes (lines 11-13). In our implementation, since the matrix 𝑓 is a boolean

matrix, we use bitset to store 𝑓 and speed up the Floyd algorithm.

Comparison to 𝑆𝑡𝑒𝑖𝑛𝑒𝑟-hardness [70]. Recently, 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness effectively estimates the

query difficultywith high accuracy. However, its focus differs from that of EH: (1) EH provides a finer-

grained measure of the difficulty of reaching each point from any other in a query (represented as a

matrix), while 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness gives an overall difficulty score (single value). (2) Steiner Hardness

focuses on estimating the computational cost required to achieve a target accuracy (e.g., recall@100

= 0.9), whereas EH aims to provide theoretical support for graph construction by measuring the

upper bound of the search list size required for greedy search to reach a target from a starting

point.

5.3 Neighboring Graph Defects Fixing
Using Escape Hardness to guide graph construction. Since Escape Hardness describes the
hardness of Greedy Search traversing from one point to another around a query, our key idea is to

ensure that the Escape Hardness between all point pairs in the small region surrounding
each historical query is low (i.e., fix the defects in the graph). We first define a threshold

𝐾ℎ (𝐾ℎ ≥ 𝑁𝑞) to determine whether it is hard to travel from one point to another.

DEFINITION 3. (𝐾ℎ-reachable). Given a directed graph index 𝐺 = (𝑉 , 𝐸) and a query 𝑞, if point
𝑢 and 𝑣 satisfy 𝐸𝐻 (𝑢, 𝑣, 𝑞,𝐺) ≤ 𝐾ℎ , we consider 𝑢 to be 𝐾ℎ-reachable to 𝑣 . Then we define the 𝐾ℎ-

reachable Matrix T ∈ {0, 1}𝑁𝑞×𝑁𝑞 as: T𝑖, 𝑗 =

{
1 H𝑖, 𝑗 ≤ 𝐾ℎ
0 H𝑖, 𝑗 > 𝐾ℎ

According to Corollary 1, ensuring low Escape Hardness between point pairs guarantees the

accuracy of Greedy Search. Therefore, our next step is to develop an effective method to fix the

defects in the graph.

Simple Solutions and Limitations. (1) Reconstruct RNG within the 𝑁𝐺𝑆,𝑞 for each historical

query 𝑞 and overlay it with the original graph. Figure 7a illustrates an example of constructing

the RNG graph. This method provides high-quality neighbors for each point in 𝑁𝐺𝑆,𝑞 . However,

it connects many edges for individual queries, which increases the computational burden during

search and enlarges the memory footprint of the graph index. (2) Randomly selecting points 𝑁𝑖,𝑞
and 𝑁 𝑗,𝑞 with T𝑖 𝑗 = 0 in 𝑁𝐺𝑆,𝑞 and adding edges until each point is 𝐾ℎ-reachable to any other

points in 𝑁𝐺𝑆,𝑞 (Figure 7b). However, this method results in disordered connections, and the points

in 𝑁𝐺𝑆,𝑞 are not connected to their actual neighbors.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

318:12 Zhiyuan Hua et al.

Algorithm 3 : Neighboring Graph Defects Fixing

Input : Query 𝑞, Graph Index 𝐺 = (𝑉 , 𝐸, 𝐸𝐸𝑋), 𝑁𝑞 , degree limitation of extra edges𝑀𝐸𝑋 , T, H
Output : New Graph Index 𝐺𝐸𝑋

1 𝐸𝐶 ← ∅ // Edge Candidates
2 for (𝑖, 𝑗) ∈ {(𝑖, 𝑗) |T𝑖, 𝑗 = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑞} do
3 𝐸𝐶 ← 𝐸𝐶 ∪ {(𝑖, 𝑗)}
4 Sort (𝑖, 𝑗) ∈ 𝐸𝐶 in ascending order by 𝛿 (𝑁𝑖,𝑞, 𝑁 𝑗,𝑞)
5 while 𝐸𝐶 ≠ ∅ do
6 (𝑠, 𝑡) ← pop the first element of 𝐸𝐶

7 if T𝑠,𝑡 ≠ 0 then continue;

8 T𝑠,𝑡 ← 1

9 if |𝐸𝑥𝑡𝑟𝑎𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑁𝑠,𝑞) | < 𝑀𝐸𝑋 then // Link new edge
10 𝐸𝐸𝑋 ← 𝐸𝐸𝑋 ∪ {(𝑁𝑠,𝑞, 𝑁𝑡,𝑞,H𝑠,𝑡)}
11 else // Prune Edges
12 choose (𝑁𝑠,𝑞, 𝑣, ℎ) ∈ 𝐸𝐸𝑋 with minimum ℎ

13 if ℎ < H𝑠,𝑡 then
14 𝐸𝐸𝑋 ← 𝐸𝐸𝑋 \ {(𝑁𝑠,𝑞, 𝑣, ℎ)}
15 𝐸𝐸𝑋 ← 𝐸𝐸𝑋 ∪ {(𝑁𝑠,𝑞, 𝑁𝑡,𝑞,H𝑠,𝑡)}
16 for 𝑖 ← 1 to 𝑁𝑞 do
17 for 𝑗 ← 1 to 𝑁𝑞 do
18 T𝑖, 𝑗 ← T𝑖, 𝑗 𝑜𝑟 (T𝑖,𝑠 𝑎𝑛𝑑 T𝑡, 𝑗) // update T.

19 return 𝐺𝐸𝑋 = (𝑉 , 𝐸, 𝐸𝐸𝑋)

NGFix.After considering both the graph’s neighborhood properties and the number of additional

edges, we choose to use the idea of the minimum spanning tree (MST) [1], and MST is a subset of

RNG [35]. We consider each edge (𝑁𝑖,𝑞, 𝑁 𝑗,𝑞) in increasing order of weight 𝛿 (𝑁𝑖,𝑞, 𝑁 𝑗,𝑞). If T𝑖, 𝑗 = 0,

we add that edge to the graph. Additionally, adding a new edge will make some points 𝐾ℎ-reachable

to others, so we update T after each edge is added to the graph. This process is repeated until all

elements of T are equal to 1. Figure 7c and 5d show the final result of NGFix in a toy example. The

details of the algorithm are shown in Algorithm 3. We represent a graph index as 𝐺 = (𝑉 , 𝐸, 𝐸𝐸𝑋),
where 𝐸 denotes the edges of the base graph, and 𝐸𝐸𝑋 represents the additional edges we add. The

main part of the algorithm is a loop that considers each edge in ascending order of distance. In each

iteration, we first check whether the edge needs to be added (lines 6-8). Then, we set an additional

out-degree limit𝑀𝐸𝑋 to prevent any point from having too many extra edges (lines 10-11). When

a point exceeds this limit, we prioritize pruning the edges with lower EH (lines 13-16). Finally,

we update T. The key idea is that for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑞 , if 𝑁𝑖,𝑞 is 𝐾ℎ-reachable to 𝑁𝑠,𝑞 and 𝑁𝑡,𝑞 is
𝐾ℎ-reachable to 𝑁 𝑗,𝑞 , then after connecting 𝑁𝑠,𝑞 and 𝑁𝑡,𝑞 , 𝑁𝑖,𝑞 will become 𝐾ℎ-reachable to 𝑁 𝑗,𝑞
(lines 17-19).

Analysis. The following theorem provides the maximum number of edges that NGFix may add

for a given query.

THEOREM 4. Given a query 𝑞, Algorithm 3 will add at most 2(𝑁𝑞 − 1) extra directed edges.

Based on Theorem 4, the loop in Algorithm 3 will execute at most𝑂 (𝑁𝑞) times before terminating.

Each iteration of the loop needs to update T, which takes 𝑂 (𝑁 2

𝑞) time, so the time complexity

of Algorithm 3 is 𝑂 (𝑁 3

𝑞). For the calculation of EH (Algorithm 2), we need to add the 𝑀𝑎𝑥𝑆

nearest neighbors of the query sequentially, and each addition requires𝑂 (𝑀𝑎𝑥𝑆2) time to compute

connectivity. Therefore, the time complexity of EH calculation is 𝑂 (𝑀𝑎𝑥𝑆3). Since we limit𝑀𝑎𝑥𝑆

to at most a constant multiple of 𝑁𝑞 , the time complexity of our algorithm for a single query is

𝑂 (𝑃 + 𝑁 3

𝑞), where 𝑃 represents the time complexity of preprocessing (Section 5.1). And each query

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:13

will at most increase the size of the graph index by𝑂 (𝑁𝑞). Since 𝑁𝑞 is generally set to a small value

(e.g., 100), the main time overhead of our algorithm lies in the preprocessing step (i.e., computing

the ground truth of each historical query).

5.4 Reachability Fixing
Previously, we focused on cases where the search successfully reaches the vicinity of the query.

However, for a small subset of queries, Greedy Search fails to do so and stops before approaching

the query. In the following, we discuss how to address situations where the search terminates far

from the query. When this occurs, it indicates that the current point lacks outgoing edges leading

toward the query. Recall that most existing graph index construction strategies approximate the

RNG or its variants[11, 22, 23, 49, 53]. Their approximation process typically involves two steps:

(1) For a given point, treat it as a query and use Greedy Search to retrieve nearby points, typically

with a result set size ranging from 100 to 2000. (2) Apply an edge pruning strategy (e.g., MRNG) to

the result set to select the true neighbors. However, since candidate neighbors are selected from a

relatively small greedy search result set, the retrieved points may be clustered in a single direction.

As a result, valuable neighbors in other directions may be overlooked. If the query lies in one of

these neglected directions, the Greedy Search is likely to stop early without finding closer points to

the query.

According to the analysis above, we propose Reachability Fixing (RFix). The key idea of RFix is

to expand the pruning candidate set of the 𝐴𝑁𝑁1,𝑞 ’s neighbors for searches that fail to
reach the vicinity of the historical query, where 𝐴𝑁𝑁1,𝑞 refers to the approximate nearest

neighbor returned by the Greedy Search. The details are shown in Algorithm 4 and the steps are as

follows: (1) Select the centroid of the base data as the entry point. For a historical query, it is
difficult to guarantee that Greedy Search starting from every entry point will reach the vicinity of

the query. Therefore, we fix the entry point as the centroid, which also helps reduce the length of

the search path. (2) Expand the candidate neighbor set of 𝐴𝑁𝑁1,𝑞 . First, we perform a Greedy

Search to retrieve the 𝐴𝑁𝑁1,𝑞 to the historical query (line 2). If the search did not reach the vicinity

of the query (line 3), we expand the candidate neighbors of 𝐴𝑁𝑁1,𝑞 . First, we collect all points 𝑢

that satisfy 𝛿 (𝑢, 𝑞) < 𝛿 (𝐴𝑁𝑁1,𝑞, 𝑞) as the extended candidate neighbor set (line 4). Then, we apply

the RNG pruning strategy to this set to ensure that the angle between any two connected edges

is greater than 60
◦
(lines 5-9), which disperses the edges in different directions and enhances the

navigational performance of the graph. Since these edges provide important paths to reach the

query, their EH is set to infinity (line 9). Finally, we add these edges to the graph using the same

EH pruning strategy as in NGFix (line 10). For the computation of extended candidate neighbor set

(line 4), brute-force searching would be time-consuming. Therefore, we use a greedy search with

a larger search list size and check all the points visited during the search process to replace the

brute-force search.

Since a single RFix does not guarantee that the search will reach the vicinity of the query, we

repeat the RFix until the search can reach the query’s vicinity or the edge degree limit for that

point is reached. As only a small number of historical queries encounter issues where the search

cannot reach the query’s vicinity, RFix does not significantly increase the graph construction time

or index size. After applying both NGFix and RFix, we have the following theorem.

THEOREM 5. Let 𝑇 denote the set of historical queries. Without pruning the edges, our method
ensures that when 𝑞 ∈ 𝑇 and 𝑘 ≤ 𝑁𝑞 , the accuracy of GreedySearch(𝐺 , 𝑞, 𝑘 , centroid, 𝐾ℎ) is 100%
(Algorithm 1).

Recall that MRNG guarantees the accuracy of Greedy Search when𝑞 ∈ 𝑋 (base data), experiments

show that the search accuracy remains high when 𝑞 is close to𝑋 [23]. Our algorithm serves a similar

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

318:14 Zhiyuan Hua et al.

Algorithm 4 : Reachability Fixing

Input : Query 𝑞, Graph index 𝐺 = (𝑉 , 𝐸, 𝐸𝐸𝑋), 𝑁𝑞
Output : New Graph Index 𝐺𝐸𝑋

1 𝑒𝑝 ← centroid of base data

2 𝐴𝑁𝑁1,𝑞 ← 𝐺𝑟𝑒𝑒𝑑𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝐺,𝑞, 1, 𝑒𝑝, 𝑁𝑞) // Algorithm 1
3 if 𝛿 (𝐴𝑁𝑁1,𝑞, 𝑞) > 𝛿 (𝑁𝑁𝑞 ,𝑞, 𝑞) then // can not reach query
4 𝑆 ← {𝑢 |𝑢 ∈ 𝑋, 𝛿 (𝑢, 𝑞) < 𝛿 (𝐴𝑁𝑁1,𝑞, 𝑞)}
5 Sort points in 𝑆 in ascending order of their distance to 𝐴𝑁𝑁1,𝑞 .

6 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← ∅ // candidate neighbor set
7 for 𝑣 ∈ 𝑆 do // MRNG-based pruning
8 if ∀𝑟 ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , 𝛿 (𝑣, 𝑟) > 𝛿 (𝐴𝑁𝑁1,𝑞, 𝑣) then
9 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ {(𝐴𝑁𝑁1,𝑞, 𝑣, 𝑖𝑛𝑓)}

10 𝐸𝐸𝑋 ← 𝐸𝐸𝑋 ∪𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
// Use the same EH pruning strategy as in lines 11-15 of Algorithm 3.

11 return 𝐺𝐸𝑋 = (𝑉 , 𝐸, 𝐸𝐸𝑋)

purpose as MRNG, but the key difference is that we construct the graph on the query distribution,

whereas MRNG constructs the graph on the base data distribution. The reasons for setting an

out-degree limit for each point are as follows: (1) to prevent the graph index from becoming too

large; (2) an excessive number of edges will benefit historical queries, but it does not necessarily

improve the performance of other queries and may increase the computational burden during the

search process.

5.5 Index Maintenance
We have introduced how to dynamically update the graph structure based on queries. However,

dynamic addition and deletion of base data is also a critical issue in real-world applications [60, 74].

Next, we discuss how the graph index handles insertion and deletion operations on the base data.

5.5.1 Insertion. To support dynamic insertion, we require a base graph structure that allows

incremental updates (e.g., HNSW). When a new data point arrives, it is first inserted into the base

graph following its insertion algorithm. However, after a large number of insertions, the extra

edges linked by NGFix and RFix may have limited impact on newly inserted points, which leads

to a degradation in search performance. To address this issue, we propose a partial rebuilding

strategy with the following steps: (1) For each node, randomly remove a proportion 𝑟 (e.g., 20%)

of its extra outgoing edges (will not remove the edge of base graph), and reset the EH values of

the remaining edges to zero. This is because the previously estimated hardness may no longer

reflect the current graph structure accurately. (2) Randomly select 𝑟 |𝑇 | historical queries from the

set of historical queries 𝑇 and apply NGFix and RFix on the updated graph. A smaller 𝑟 leads to

faster reconstruction but may result in lower graph quality. We provide a detailed analysis of the

trade-offs in Section 6.7.

5.5.2 Deletion. The most commonly used method for deleting points is lazy deletion [11, 49, 53],

where the deleted points are retained for navigation during the search process but are excluded from

the final result set. This method is simple and efficient. However, when a large number of points

are deleted, the deleted points in the graph can significantly prolong the search paths, resulting in

degraded search performance. To address this issue, we need to completely remove the point and its

associated edges from the graph. This introduces two main challenges: (1) We need to identify and

remove all incoming edges to the deleted point. A trivial solution is to store all incoming edges for

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:15

DataSet |𝑋 | |𝑄 | |𝑇 | 𝑑 Distance Type

Text-to-Image10M 10M 10K 10M 200 InnerProduct Text, Image

LAION10M 10M 10K 10M 512 Cosine Text, Image

WebVid2.5M 2.5M 10K 2.5M 512 Cosine Text, Video

MainSearch 11.2M 50K 1M 256 InnerProduct Text, Image

SIFT10M 10M 10K 10M 128 Euclide Image

DEEP10M 10M 10K 10M 96 Cosine Image

Table 1. Statistics of the datasets. |𝑋 |, |𝑄 | and |𝑇 | denote the number of base data, test queries and historical
queries, respectively. 𝑑 denotes the dimensionality of vectors.

each point in memory, but this significantly increases memory consumption. (2) The deletion of the

point may damage the structure around it, resulting in reduced connectivity in its neighborhood.

For the first challenge, we adopt a lazy deletion strategy for a small number of deletions. Once

the number of deleted points exceeds a certain threshold (e.g., 1% of the base data), we perform

a full traversal of the graph index to remove all deleted points along with their incoming edges.

For the second challenge, recall that NGFix is designed to fix defective graph structures in the

vicinity of queries. Thus, we can simply treat the deleted point as a query and execute NGFix. The

connectivity degradation resulting from the point deletion will be mitigated by applying NGFix.

6 EXPERIMENTS
6.1 Experimental Setup
Datasets. We mainly evaluate our method using four modern large-scale cross-modal datasets.

In Text-to-Image [9] and LAION [59], the base data are image vectors, while the queries are text

vectors. In WebVid [8], the base data are embeddings of videos, and the queries are text vectors.

We applied deduplication to the queries, ensuring that the test queries are entirely different from

historical queries. We then randomly sampled 10k queries that are different from historical queries

for testing. Specifically, the MainSearch dataset is sourced from a large e-commerce platform, where

the base data corresponds to products. Each product comprises an image and accompanying text,

which we combine and embed into a single vector. Query vectors, on the other hand, are derived

from either text or image embeddings. The queries are collected over a continuous time, and we use

the last 50k queries that differ from historical queries for testing. For the MainSearch dataset, we

primarily evaluate the performance of different graph indexes when historical queries are limited

and the performance of our method when constructing the index online. Additionally, we conduct

experiments using two single-modal datasets [36, 75]. The statistics of the datasets are listed in

Table 1.

In the Text-to-Image dataset, text and image embeddings are generated by a variant of DSSM [33]

and SE-ResNeXt-101 [32], respectively, and are mapped into a shared space via contrastive learning.

The embeddings in LAION and WebVid are generated using CLIP-ViT-B/32 [56]. In MainSearch,

we first use a 3B-parameter multimodal LLM
3
to generate 3072-dimensional embeddings, which

are then compressed to 256 dimensions using Matryoshka Representation Learning [38]. The

embeddings in DEEP and SIFT datasets are generated by GoogLeNet [62] and Scale-Invariant

Feature Transform [44], respectively.

Algorithms and Parameter Setting.We useG-NGFix to denote the graph index after NGFix on
base graph G and we use G-NGFix* to denote the graph index after NGFix and RFix on G. For cross-
modal datasets, since RoarGraph has significantly outperformed existing graph algorithms [11],

we mainly compare the performance of HNSW-NGFix* and RoarGraph [11], using HNSW [49] and

3
Due to commercial privacy considerations, we are unable to provide further details about the LLM.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

318:16 Zhiyuan Hua et al.

NSG [23] as baselines. For single-modal datasets, we compare the performance of HNSW-NGFix*,

HNSW, 𝜏-MNG [53], RoarGraph and NSG. We determine the parameters for each graph index

through multiple experiments. The parameters are as follows: (1) HNSW-NGFix*: We set𝑀𝐸𝑋 = 48

to limit the out-degree of each node. For each historical query, we apply NGFix and RFix twice to

fix defects in the graph. In the first round of fixing, we set 𝑁𝑞 = 100, 𝐾ℎ = 100 and 𝑀𝑎𝑥𝑆 ≤ 500;

in the second round, we set 𝑁𝑞 = 10, 𝐾ℎ = 10 and 𝑀𝑎𝑥𝑆 ≤ 50. The reason for performing two

rounds of fixing is that using 𝑁𝑞 = 100 mainly improves performance when the search list size

𝐿 is large (i.e., ≥ 100). However, in scenarios where only a small number of nearest neighbors

are required (e.g., retrieving the top 10 NNs), a smaller 𝐿 is sufficient. To ensure performance in

such cases, we apply NGFix and RFix again with 𝑁𝑞 = 10
4
. The number of historical queries used

for NGFix and RFix is summarized in Table 1. We use brute-force to calculate the exact 𝑘NN of

each historical query. For cross-modal datasets, to prevent excessive node out-degrees, we set

𝑀 = 16 and use 𝑒 𝑓 𝐶 = 2000 to obtain high-quality neighbors for each point in base graph. In

contrast, for single-modal datasets, where the number of hard queries is relatively small and NGFix

adds fewer edges, we set 𝑀 = 32 and 𝑒 𝑓 𝐶 = 2000. Existing research indicates that in uniformly

distributed random data, the upper layers of HNSW play a limited role when the dimensionality

𝑑 ≥ 32 [51]. In vector retrieval scenarios, 𝑑 typically exceeds 32, and the upper layers of HNSW

also demonstrate limited effectiveness under real-world data distributions [43, 69, 70]. To avoid the

additional indexing time and size overhead caused by the upper layers, we use only the bottom

layer of HNSW as base graph G. (2) RoarGraph: Similar to G-NGFix, we set 𝑁𝑞 = 100 and use the

same number of historical queries as G-NGFIX. Additionally, we set𝑀 = 32 and 𝐿 = 2000 to obtain

high-quality neighbors. (3) HNSW: We set 𝑒 𝑓 𝐶 = 2000 to provide good neighbors for nodes in the

graph, and we set 𝑀 = 32 to control the out-degree of each node. (4) NSG: We set 𝐶 = 2000 and

𝐿 = 2000 to provide good quality of neighbors, and we set 𝑅 = 64 to control the average out-degree

of the graph. (5) 𝜏-MNG: For the same reasons as NSG, we set 𝑅 = 64,𝐶 = 2000, 𝐿 = 2000. According

to the recommendations in the paper, we set 𝜏 to 10 for SIFT10M and 𝜏 to 0.01 for DEEP10M.

Evaluation metrics. Following previous works [11, 23, 34, 49, 53], we use average recall@𝑘 and

rderr@𝑘 (defined in Section 2) to measure the query accuracy. We use query-per-second (QPS) and

Number of Distance Calculations (NDC) to measure efficiency. We compare the QPS at the same

recall@𝑘 and the NDC at the same rderr@𝑘 , where a higher QPS or lower NDC indicates a better

index. When plotting the recall@𝑘-QPS curves, we initially set search list size 𝐿 (a.k.a., ef_search in

HNSW) to 𝑘 , and then incremented it by 10 at each step. For each 𝐿, we recorded the corresponding

QPS and recall@𝑘 . We select representative points to plot the curves. The rderr@𝑘-NDC curves

were generated in the same manner. We mainly focus on the cases where 𝑘 = 10 and 𝑘 = 100.

We implemented NGFix* in C++ and compiled our code using g++ 10.1.0. Experiments were con-

ducted on an Intel(R) Xeon(R) Gold 5220 CPU@2.20GHz with 256GB DDR4 memory (@2666MT/s)

under CentOS7.9. We used the same distance computation functions for different graph indexes. All

queries were performed with a single thread. Additionally, we utilize 32 threads when evaluating

the index construction time of different indexes.

6.2 Search performance
Cross-Modal Datasets. Figure 8 presents the QPS–recall@100 and NDC–rderr@100 curves for

various graph indexes across four cross-modal datasets. HNSW-NGFix* outperforms the other

algorithms: at recall@100=0.95, its QPS is 1.3–1.6 times that of RoarGraph and 1.7–3.66 times

that of HNSW. At recall@100=0.99, HNSW-NGFix*’s advantage becomes even more pronounced,

4
For RFix, setting 𝑁𝑞 = 10 also ensures that the search can reach the vicinity of the query when 𝑁𝑞 = 100. Therefore,

RFix only needs to be performed once with 𝑁𝑞 = 10.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:17

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

5

10

Q
PS

 x
 1

00

Text-to-Image10M

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0.0

2.5

5.0

7.5

Q
PS

 x
 1

00

WebVid2.5M

0.94 0.95 0.96 0.97 0.98 0.99 1.00
recall@100

0

10

20

Q
PS

 x
 1

00

MainSearch

1 5 10 15 20 25 30
rderr@100 x 0.0001

0

10

20

N
D

C
 x

 1
00

0

Text-to-Image10M

1 5 10 15 20 25 30
rderr@100 x 0.0001

0

10

20

30
N

D
C

 x
 1

00
0

LAION10M

1 5 10 15 20 25 30
rderr@100 x 0.0001

0

5

10

15

20

N
D

C
 x

 1
00

0

WebVid2.5M

1 10 20 30 40
rderr@100 x 0.0001

0

5

10

15

20

N
D

C
 x

 1
00

0

MainSearch

0.90 0.92 0.94 0.96 0.98 1.00
recall@10

0

10

20

30

Q
PS

 x
 1

00

Text-to-Image10M

0.90 0.92 0.94 0.96 0.98 1.00
recall@10

0

5

10

15

20

Q
PS

 x
 1

00

LAION10M

0.90 0.92 0.94 0.96 0.98 1.00
recall@10

0

10

20

Q
PS

 x
 1

00

WebVid2.5M

0.90 0.92 0.94 0.96 0.98 1.00
recall@10

0

20

40

60

Q
PS

 x
 1

00

MainSearch

1 5 10 15 20 25 30
rderr@10 x 0.0001

0

5

10

15

20

N
D

C
 x

 1
00

0

Text-to-Image10M

1 5 10 15 20 25 30
rderr@10 x 0.0001

0

5

10

15

N
D

C
 x

 1
00

0

LAION10M

1 5 10 15 20 25 30
rderr@10 x 0.0001

0

5

10

15

N
D

C
 x

 1
00

0

WebVid2.5M

1 10 20 30 40
rderr@10 x 0.0001

0

5

10

15

20

N
D

C
 x

 1
00

0

MainSearch

HNSW-NGFix* RoarGraph HNSW NSG

Fig. 8. Search performance on cross-modal datasets.

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M (high similarity)

HNSW-NGFix*
RoarGraph
HNSW

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M (mid similarity)

HNSW-NGFix*
RoarGraph
HNSW

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M (low similarity)
HNSW-NGFix*
RoarGraph
HNSW

Fig. 9. Evaluation of queries with different similarities.

with a QPS 1.31–2.25 times higher than RoarGraph and 1.78–6.88 times higher than HNSW. In

terms of NDC and rderr@100, HNSW-NGFix* also demonstrates significant superiority, especially

when aiming for low error rates. When rderr@100 is less than 0.0001, HNSW-NGFix* requires

only 48.5%–78% of the distance calculations needed by RoarGraph. For the case of 𝑘 = 10, HNSW-

NGFix* also achieves better search performance compared to other graph indexes. Besides the

performance improvement, we have the following additional insights. (1) On the MainSearch

dataset, we can still achieve significantly higher performance than HNSW using only a small

number of historical queries. This is because queries in real-world production environments often

exhibit similar characteristics, making it more likely for the test queries to fall within regions of the

graph where defects have already been fixed. (2) Compared to RoarGraph, HNSW-NGFix* shows

more significant performance advantages when achieving high recall (e.g., recall@100 > 0.98) or

low rderr (e.g., rderr@100 < 0.0001). The reason lies in our use of EH to guide graph construction,

which takes advantage of the hard queries with poor neighboring structures. The edges linked by

these queries make the final graph index more effective in achieving high recall.

OOD Queries with Different Similarities. We evaluate our method on test queries with

varying similarity to historical queries. We measure query similarity using the distance 𝑑 between

test queries and their nearest historical queries. In LAION10M (distance is defined as 1-cosine),

18.1% of the test queries have 𝑑 ≤ 0.05 (i.e., high similarity), and 26.2% satisfy 0.05 < 𝑑 ≤ 0.1

(i.e., moderate similarity). The remaining queries exhibit low similarity. The thresholds depend

on the characteristics of each dataset. For LAION10M, we choose 0.05 and 0.1 to better illustrate

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

318:18 Zhiyuan Hua et al.

0.96 0.97 0.98 0.99 1.00
recall@100

0

5

10

15

20

Q
PS

 x
 1

00

Text-to-Image10M (ID Queries)

HNSW-NGFix*
RoarGraph
HNSW

0.95 0.96 0.97 0.98 0.99 1.00
recall@100

0

2

4

6

8

10

Q
PS

 x
 1

00

LAION10M (ID Queries)

HNSW-NGFix*
RoarGraph
HNSW

Fig. 10. Evaluation of IDQueries in cross-modal datasets.

0.95 0.96 0.97 0.98 0.99 1.00
recall@100

0

5

10

15

20

Q
PS

 x
 1

00

SIFT10M

HNSW-NGFix*
RoarGraph
HNSW
NSG
τ -MNG

0.95 0.96 0.97 0.98 0.99 1.00
recall@100

0

5

10

15

20

Q
PS

 x
 1

00

DEEP10M

HNSW-NGFix*
RoarGraph
HNSW
NSG
τ -MNG

Fig. 11. Search performance on single-modal datasets.

0 2 4 6 8 10
Historical Query Set Size/M

150

200

250

300

350

Q
PS

(r
ec

al
l@

10
0

=
0.

99
) Text-to-Image10M

HNSW(M=16)-NGFix*
RoarGraph-10M
RoarGraph-1M
HNSW(M=32)

0 2 4 6 8 10
Historical Query Set Size/M

0

50

100

150

200

250

300

Q
PS

(r
ec

al
l@

10
0

=
0.

98
) LAION10M

HNSW(M=16)-NGFix*
RoarGraph-10M
RoarGraph-1M
HNSW(M=32)

19 20 21 22
Index Size (GB)

0

50

100

150

200

250

300

Q
PS

(r
ec

al
l@

10
0

=
0.

98
) LAION10M

HNSW(M=16)-NGFix*
RoarGraph-10M
RoarGraph-1M
HNSW(M=32)

Fig. 12. Evaluation of historical query set size.

the relationship between index performance and query similarity. Figure 9 demonstrates that our

method outperforms others under varying similarity levels.

ID Queries in Cross-Modal Datasets. In cross-modal retrieval, both OOD queries (e.g., text-to-

image) and ID queries (e.g., image-to-image) may occur. As shown in Figure 10, the index refined

by NGFix* with OOD queries also achieves strong performance on ID queries. This indicates that

fixing with OOD queries does not affect the performance of ID queries.

Single-Modal Datasets. Figure 11 shows the QPS-recall@100 curves in single-modal datasets.

Our approach achieves modest QPS improvements of approximately 10%. This limited improvement

is due to NGFix’s emphasis on hard queries, which are rare in single-modal datasets, leading to fewer

effective edge connections. Another reason is that HNSW and NGFix* construct the graph based

on the base data distribution and the query distribution, respectively. However, for single-modal

datasets, these two distributions are consistent. Since HNSW already fits the base data distribution

well and only a few hard queries that are relatively far from the base data benefit from our method,

the improvement brought by NGFix* is limited in this case. On the other hand, RoarGraph’s graph

construction strategy fails to leverage the information provided by these hard queries. In some

cases, the edges even increase the computational burden during the search, causing its performance

to be even worse than HNSW.

Since the single-modal datasets contain fewer hard queries and we can easily achieve high

accuracy, our subsequent experiments primarily focus on evaluating the performance of our

method on cross-modal datasets.

6.3 Effect of HistoricalQuery Set Size.
In this experiment, we evaluate the performance of our method with varying numbers of historical

queries. Since RoarGraph needs to entirely rebuild the graph when the number of historical queries

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:19

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M

HNSW-NGFix*-ExactKNN
HNSW-NGFix*-AKNN-3000
HNSW-NGFix*-AKNN-1500
RoarGraph

0.0 0.2 0.4 0.6 0.8 1.0
Average recall@100 with 5 random ep

0

50

100

150

N
um

be
r o

f e
xt

ra
 e

dg
es

corr=-0.9065

LAION10M

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M

NGFix
Random Connect
Reconstruct RNG

(a)

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M

HNSW-NGFix*-ExactKNN
HNSW-NGFix*-AKNN-3000
HNSW-NGFix*-AKNN-1500
RoarGraph

0.0 0.2 0.4 0.6 0.8 1.0
Average recall@100 with 5 random ep

0

50

100

150

N
um

be
r o

f e
xt

ra
 e

dg
es

corr=-0.9065

LAION10M

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M

NGFix
Random Connect
Reconstruct RNG

(b)

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M

HNSW-NGFix*-ExactKNN
HNSW-NGFix*-AKNN-3000
HNSW-NGFix*-AKNN-1500
RoarGraph

0.0 0.2 0.4 0.6 0.8 1.0
Average recall@100 with 5 random ep

0

50

100

150

N
um

be
r o

f e
xt

ra
 e

dg
es

corr=-0.9065

LAION10M

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M

NGFix
Random Connect
Reconstruct RNG

(c)

Fig. 13. (a) Evaluation of different preprocessingmethods. (b) Evaluation of the EscapeHardness. (c) Evaluation
of different defects fixing methods.

differs from the previous configuration, building RoarGraph with different quantities of historical

queries demands substantial time. So we only selected RoarGraph with 1M and 10M historical

queries for comparison and we denote RoarGraph with 𝑝 historical queries as RoarGraph-𝑝 . Figure

12 illustrates the QPS achieved by HNSW-NGFix* at specific recall@100 across different numbers

of historical queries. HNSW-NGFix* requires only 8%-30% of the historical queries compared to

RoarGraph-10M when achieving the same performance on different datasets. Additionally, HNSW

(M=16)-NGFix*, using merely 1% of the historical queries relative to the base data size, achieves

the same performance as HNSW (M=32). These results demonstrate that our method can achieve

superior performance with fewer historical queries and can attain high performance in a short

time when constructing the graph online. The rightmost subfigure in Figure 12 shows the trade-off

between index size and QPS. We vary the number of historical queries used to control the index

size of HNSW-NGFix*. The results indicate that HNSW-NGFix* achieves higher QPS compared to

both RoarGraph and HNSW under the same index size.

6.4 Ablation Study
Evaluating the impact of different preprocessing methods.We compare the graph quality

achieved by using exact 𝑘NN against that of approximate 𝑘NN (described in section 5.1). HNSW-

NGFix-ExactKNN represents the graph constructed using exact 𝑘NN obtained through brute-force

methods for historical queries. Conversely, HNSW-NGFix-AKNN-𝐿 denotes the graph built using

approximate 𝑘NN derived from a Greedy Search with a search list size of 𝐿. As illustrated in Figure

13a, our experimental results show that the QPS-recall@100 curves for approximate 𝑘NN are almost

identical to those of exact 𝑘NN, with only a slight decrease.

Evaluating the effectiveness of EH in differentiating between easy and hard queries.We

evaluate whether Escape Hardness could guide us in linking different numbers of edges according

to the hardness of the queries. Figure 13b reveals a high correlation between query accuracy and

the number of additional edges connected by NGFix. This indicates that our algorithm concen-

trates on hard queries by adding more edges for them while linking fewer edges for easy queries.

Consequently, our approach not only optimizes the graph index size but also reduces the overhead

of distance calculations during searches.

Evaluating different defects fixing methods. Figure 13c illustrates the performance of graphs

generated by different defects fixing methods (introduced in Figure 7). Among these, random

connecting exhibits the poorest performance because randomly connected edges fail to provide

effective neighbors for each node. Meanwhile, NGFix achieves better performance than the method

of reconstructing RNG. Moreover, the average out-degree of the graph derived from Reconstructing

RNG is approximately 1.37 times that of NGFix, indicating that NGFix reduces the index size while

maintaining a high-quality graph structure.

Evaluating the impact of different edge-pruning strategies. Figure 14 illustrates the

performance of different edge-pruning strategies employed in NGFix (Algorithm 3 lines 11-15).

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

318:20 Zhiyuan Hua et al.

0.95 0.96 0.97 0.98 0.99 1.00
recall@10

0

500

1000

1500

2000

Q
PS

Text-to-Image10M

Prune by EH
Prune by Random
Prune by MRNG

0.970 0.975 0.980 0.985 0.990 0.995 1.000
recall@10

0

500

1000

1500

2000

2500

3000

Q
PS

Text-to-Image10M (high similarity)

Prune by EH
Prune by Random
Prune by MRNG

Fig. 14. Evaluation of different edge-pruning strategies.

0.95 0.96 0.97 0.98 0.99 1.00
recall@100

0

500

1000

1500

2000

2500

Q
PS

MainSearch
HNSW
HNSW-NGFix
HNSW-NGFix*

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

200

400

600

800

Q
PS

LAION10M
HNSW
HNSW-NGFix
HNSW-NGFix*

Fig. 15. Evaluation of Reachability Fixing

Text-to-Image10M LAION10M WebVid2.5M MainSearch

10 4

10 5

C
on

st
ru

ct
io

n
Ti

m
e

(s
)

Text-to-Image10M LAION10M WebVid2.5M MainSearch
0

5

10

15

20

25

In
de

x
Si

ze
 (G

B
)

HNSW (M=16) -NGFix*-ExactKnn HNSW (M=16) -NGFix*-AKNN-1500 HNSW (M=32) RoarGraph NSG

Fig. 16. Construction time and index size

Pruning based on EH achieves better performance than random pruning, whereas MRNG pruning

exhibits the poorest performance. This is becauseMRNG pruning is designed for queries that overlap

with the base data [23] and is more likely to prune long edges (i.e., edge (𝑢, 𝑣) with large 𝛿 (𝑢, 𝑣)).
However, since the 𝑘NN of hard queries are often scattered across different regions [11], these long

edges are often very useful for hard queries, and pruning them adversely affects the connectivity

of the graph around hard queries, leading to significant losses in accuracy and performance.

Evaluating the impact of the RFix. Figure 15 shows the performance of NGFix and NGFix*.

In the MainSearch dataset, due to the relatively large proportion of searches that cannot reach the

query vicinity (Figure 2b), NGFix* improves performance by 18% over NGFix when recall@100=0.95.

In LAION10M, since the search for almost all queries can reach the query vicinity before RFix,

NGFix* only shows a slight improvement over NGFix.

6.5 Construction Time and Index Size
Figure 16 reports the index construction time and the index size across different datasets. The index

size reflects the memory consumption during the search. When using the exact 𝑘NN for graph

construction, the indexing time of HNSW-NGFix* is almost the same as that of RoarGraph. However,

when a large number of historical queries are involved, the construction time becomes significantly

higher than that of other methods. When using approximate 𝑘NN, HNSW-NGFix* accelerates

index construction by 2.35-9.02 times compared to RoarGraph (RoarGraph lacks a complete graph

index when using historical queries, which makes it unable to leverage approximate 𝑘NN for graph

construction). Meanwhile, HNSW-NGFix* requires 82.1% to 210.2% of the indexing time taken by

HNSW, and 16.5% to 95.5% compared to NSG. On the MainSearch dataset, HNSW achieves its best

performance with𝑀 = 32, while HNSW-NGFix* only needs𝑀 = 16, resulting in a shorter index

construction time than HNSW. In terms of index size, HNSW-NGFix* is smaller than HNSW since

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:21

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M
M EX = 0
M EX = 8
M EX = 16

M EX = 48
M EX = 80

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

Q
PS

 x
 1

00

LAION10M
K h = 100
K h = 200
K h = 300
K h = 400

0.85 0.90 0.95 1.00
recall@20

0

5

10

15

20

Q
PS

 x
 1

00

LAION10M

N N q q =100 + =10
N N q q =100 + =20
N q =100
N q =20

Fig. 17. Evaluation of different parameters.

0.92 0.94 0.96 0.98 1.00
recall@100

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Q
PS

 x
 1

00

Text-to-Image10M (Insert 2M)
Rebuild
Partial Rebuild 50%
Partial Rebuild 20%
only HNSW Insert

0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

10

Q
PS

 x
 1

00

WebVid2.5M (Insert 0.5M)
Rebuild
Partial Rebuild 50%
Partial Rebuild 20%
only HNSW Insert

0 10 20 30 40 50 60
rebuilding ratio r/%

0

2

4

6

8

10

Ti
m

e
x

10
00

 (s
)

insert + full rebuild

only insert

Text-to-Image10M (Insert 2M)
Time (insert + partial rebuild r)

Fig. 18. Evaluation of insertion method

it only utilizes the bottom layer of HNSW. However, as we store the EH of each edge (with an

additional 16 bits per extra edge) for edge pruning, the index size of HNSW-NGFix* is slightly

larger than that of RoarGraph and NSG.

6.6 Effect of Different Parameters
Figure 17 illustrates the performance of the graph index under different parameter settings. For the

parameter𝑀𝐸𝑋 , we fix 𝐾ℎ = 200 and perform a single NGFix with 𝑁𝑞 = 100 to evaluate the impact

of 𝑀𝐸𝑋 . Since a smaller 𝑀𝐸𝑋 leads to the pruning of useful edges, while a larger 𝑀𝐸𝑋 increases

the search overhead, we recommend setting𝑀𝐸𝑋 in the range of 32–64. For datasets with higher

average query hardness (as measured by EH), a larger 𝑀𝐸𝑋 may be appropriate. Nevertheless,

setting 𝑀𝐸𝑋 = 48 generally yields sufficiently good performance. For the parameter 𝐾ℎ , we fix

𝑀𝐸𝑋 = 48 and also perform a single NGFix with𝑁𝑞 = 100 to evaluate the impact of𝐾ℎ . Experimental

results show that a smaller 𝐾ℎ tends to produce a more effective index, but at the cost of increased

index size. For example, when 𝐾ℎ = 100 and 𝐾ℎ = 400, the average out-degrees are 41.26 and 30.85,

respectively. Therefore, 𝐾ℎ can be selected based on the trade-off between space and performance

requirements. For the parameter 𝑁𝑞 , we recommend first setting 𝑁𝑞 = 100, and then performing

NGFix* again with𝑁𝑞 = 𝑘 based on the number of NNs 𝑘 to be retrieved. The experimental results in

the rightmost subfigure of Figure 17 show that when 𝑘 = 20, performing NGFix* with 𝑁𝑞 = 20 yields

slightly better performance. Nonetheless, in scenarios where 𝑘 varies frequently, it is not necessary

to perform NGFix* for all values of 𝑘 . Performing NGFix* twice with 𝑁𝑞 = 10 and 𝑁𝑞 = 100 is

sufficient to produce a high-quality index. We include more details about 𝑁𝑞 in Appendix C. For

the parameter𝑀𝑎𝑥𝑆 , since very few edges have an EH value exceeding 5𝑁𝑞 , setting𝑀𝑎𝑥𝑆 to 5𝑁𝑞
is adequate. If 𝑁𝑞 is set to a large value (e.g., ≥ 300), it is recommended to set𝑀𝑎𝑥𝑆 to 1.2𝑁𝑞–2𝑁𝑞
to reduce the index construction overhead, as lowering𝑀𝑎𝑥𝑆 will not significantly affect the index

quality. For the parameter settings of the base graph, we can follow the selection strategy of the

corresponding graph index. Meanwhile, slightly reducing the average out-degree is recommended

to avoid an overly large final graph (e.g., reducing HNSW’s𝑀 by 16).

6.7 Evaluation of Index Maintenance Methods
In this experiment, to ensure a fair comparison with rebuilding, we perform both insertion and

deletion operations using 32 threads.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

318:22 Zhiyuan Hua et al.

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
recall@100

0

250

500

750

1000

1250

1500

Q
PS

Text-to-Image10M (Delete 2M)

Delete by NGFix
Rebuild HNSW-NGFix*
Delete by Flag

0.95 0.96 0.97 0.98 0.99 1.00
recall@100

0

500

1000

1500

2000

Q
PS

DEEP10M (Delete 2M)

Delete by NGFix
Rebuild NSG
Delete by Flag

Fig. 19. Evaluation of deletion method

Insertion. Figure 18 shows the performance of the graph index after inserting 20% of the

data points using different insertion algorithms. “Partial Rebuild 𝑟” in the figure denotes a partial

rebuilding with proportion 𝑟 , as described in Section 5.5.1. We perform a partial rebuilding after

inserting 20% of the data. Compared with directly using HNSW’s insertion algorithm, partial

rebuilding significantly improves the quality of the resulting graph index. A higher proportion

leads to better index quality. The rightmost subfigure in Figure 18 shows the relationship between

time (insertion + rebuilding) and the parameter 𝑟 . When 𝑟 = 20%, the total time is only 28.5% of that

for full rebuilding. In practice, we can choose an appropriate proportion based on time and quality

requirements. If new points are inserted during partial rebuilding, the insertion and rebuilding

processes remain independent. This is because partial rebuilding only modifies the extra edges,

while inserting new points only modifies the base graph. So the total insertion time is not affected.

Deletion.When performing deletions with NGFix, we adopt greedy search with a search list size

of 800 to obtain the approximate ground truth, and set parameters 𝑁𝑞 = 100, 𝐾ℎ = 100,𝑀𝑎𝑥𝑆 ≤ 500.

Figure 19 presents the results of the deletion experiment. The left panel shows the performance

of different methods after removing 20% of the base data on the Text-to-Image dataset. It can be

observed that the performance of the index degrades significantly under the lazy deletion strategy.

In contrast, the index quality achieved by applying NGFix after deletion is nearly identical to that

of full reconstruction, with only a slight drop. The time cost of deletion using NGFix is only 6.8% of

that of a full rebuilding. To demonstrate the robustness of our deletion algorithm, the right panel

shows the performance after deletion using NGFix on an NSG index (without NGFix* based on

historical queries). It can be observed that the performance after deletion even surpasses that of

full reconstruction, as NGFix is capable of linking edges of higher quality than those in the original

NSG. This demonstrates that our proposed deletion method also performs well on other graph

indexes.

7 DISCUSSION AND FUTUREWORK
Mitigate the dependence on historical queries. In certain scenarios (e.g., cold-start), the lack of

sufficient historical queries may degrade index performance. We propose two strategies to mitigate

this issue: (1) Since multimodal embedding models typically require a large amount of multimodal

data for training, we can use the training data as historical queries. (2) In scenarios involving

workload drift, only a few representative queries may be available. To address this limitation, we

propose a data augmentation method to synthetically generate a larger set of queries. We define

HNSW-NGFix*-p%-q% to use some real historical queries equal to p% of the base data size, along

with generated queries equal to q% of the base data size. For each real historical query, we generate

q/p synthetic queries. In each generation, Gaussian noise with zero mean and variance

√︁
𝑐/𝑑 is

added independently to every dimension of historical queries (𝑑 represents the dimensionality). In

experiments on WebVid and MainSearch, we selected 𝑐 = 0.3 as it achieved the best performance

among 𝑐 = 0.1, 0.2, 0.3, 0.4. Experimental results in Figure 20 demonstrate the effectiveness of this

method.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:23

0.94 0.95 0.96 0.97 0.98 0.99 1.00
recall@100

0

5

10

15

20

25

Q
PS

 x
 1

00

MainSearch
HNSW-NGFix*-1%-19%
HNSW-NGFix*-1%-9%
HNSW-NGFix*-1%-0%
HNSW

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

2

4

6

8

10

12

Q
PS

 x
 1

00

WebVid2.5M
HNSW-NGFix*-1%-19%
HNSW-NGFix*-1%-9%
HNSW-NGFix*-1%-0%
HNSW

Fig. 20. Evaluation of generated historical queries.

𝑞ℎ

𝒩𝑞ℎ,20

𝑞𝑡

𝒩𝑞𝑡,10

(a)

0.90 0.92 0.94 0.96 0.98 1.00
recall@100

0

5

10

15

20

25

Q
PS

 x
 1

00

MainSearch

HNSW-NGFix+*
HNSW-NGFix*

0.85 0.90 0.95 1.00
recall@100

0

2

4

6

8

10

12

Q
PS

 x
 1

00

WebVid2.5M
HNSW-NGFix+*
HNSW-NGFix*

(b)

Fig. 21. (a) Example of NGFix+. (b) Evaluation of NGFix+.

Selection strategy for historical queries. When the query workload remains stable, it is

unnecessary to design a historical query selection strategy, as NGFix* can adaptively adjust the

graph index based on the query hardness. For queries with low EH, NGFix* adds very few edges or

skips them altogether. In contrast, for high-EH queries, it adds more edges to effectively fix defects

in the graph. So it is sufficient to use all available historical queries. In scenarios with dynamic

workloads, the limited out-degree of each node may prevent new edges from being added for

incoming queries, as edges added for old historical queries may occupy the out-degree budget. To

prioritize fixing the graph structure for new queries, we periodically delete a subset of existing

extra edges added by NGFix* to make room for newly added edges (e.g., by randomly selecting

20% extra edges). Then, we prioritize using the newest queries based on their timestamps to fix the

graph. This allows the index to better adapt to the new workload. Exploring better strategies to

adapt to workload changes could be considered a direction for future work.

Extending the theoretical guarantee. Let N𝑞,𝑘 denote the set of the top-𝑘 NN of query 𝑞.

Let 𝑞ℎ denote historical query, and 𝑞𝑡 denote the new test query. One direction for extending

the theoretical guarantee is to ensure query accuracy when 𝛿 (𝑞ℎ, 𝑞𝑡) < 𝜀. We let 𝑈𝑘 denote the

union of the top-𝑘 NN sets of all queries 𝑞𝑡 that satisfy 𝛿 (𝑞ℎ, 𝑞𝑡) < 𝜀. For each 𝑞ℎ and a fixed 𝜖 ,

in order to guarantee the accuracy of all queries satisfying 𝛿 (𝑞ℎ, 𝑞𝑡) < 𝜖 , we need to consider all

points in the set 𝑈𝑘 . Since |𝑈𝑘 | can be very large (in the worst case, it could be the size of the base

data), ensuring query accuracy becomes very difficult. Therefore, we try to extend the theoretical

guarantee from another perspective. Assuming that the search can reach the vicinity of the query,

one direction for theoretical extension is as follows: when N𝑞𝑡 ,𝑘 ⊆ N𝑞ℎ,𝐾 , we aim to guarantee
that the recall@𝑘 for 𝑞𝑡 is 100%, where search list size 𝐿 ≥ 𝑘 , 𝐾 = 𝑐𝑘 and 𝑐 is a constant
(e.g., 2). Figure 21a provides an example of this theory. Our method (NGFix) is already able to

ensure accuracy where 𝑐 = 1 (i.e., N𝑞𝑡 ,𝑘 = N𝑞ℎ,𝑘). In the WebVid dataset, experimental results show

that when N𝑞𝑡 ,10 = N𝑞ℎ,10, 𝛿 (𝑞𝑡 , 𝑞ℎ) is approximately less than 0.03 (Euclidean distance). Moreover,

when N𝑞𝑡 ,10 ⊆ N𝑞ℎ,20, 𝛿 (𝑞𝑡 , 𝑞ℎ) is approximately less than 0.114. Details of this experiment are

provided in Appendix D.

To ensure the property when 𝑐 > 1, a trivial approach is to enumerate all N𝑞𝑡 ,𝑘 and apply NGFix

for each one. We conducted experiments on cross-modal datasets with parameters set to 𝑘 = 100

and 𝐾 = 200 (i.e., 𝑐 = 2). To avoid excessive graph construction overhead, we use a small number of

historical queries (2.5×104 in WebVid and 10
5
in MainSearch) and randomly enumerate 100N𝑞𝑡 ,100

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

318:24 Zhiyuan Hua et al.

for each historical query. We denote the new method as NGFix+, and the experimental results in

Figure 21b show that NGFix+ outperforms NGFix. However, NGFix+ takes 19.2 times longer to run

than NGFix. Therefore, one direction for future work is to develop more efficient algorithms to

ensure the above property.

Hash-Table Method. When test queries exactly overlap with historical queries, we can use

a hash-table method. The main steps are as follows: (1) Apply a hash function (e.g., MD5 [58])

to each query to obtain a compact key, and store the key along with the corresponding ground

truth for historical queries in a hash table. (2) For a test query, if it can be retrieved from the hash

table, directly return the ground truth; otherwise, use ANNS. The latency of the hash-table method

is about 9.3% of that of graph-based ANNS in MainSearch dataset (using HNSW-NGFix* with

search list size 𝐿 = 100). However, the hash-table method cannot be generalized to unseen queries.

Moreover, this method requires substantial extra space to store the ground truth and may suffer

from errors due to hash collisions. In scenarios with high query repetition, using both hash table

and HNSW-NGFix* can achieve higher QPS.

Query Similarities. In graph-based ANNS, a fixed search parameter 𝐿 is typically used for all

queries when aiming for a predetermined target recall [11, 23, 28, 49]. However, the experimental

results in Figure 9 show that the value of 𝐿 required (i.e., the latency required) to achieve a specific

recall varies significantly across queries with different similarity levels. This observation suggests

the potential for the following adaptive strategy: We first compute the similarity between the new

query and historical queries, and then adjust the search parameter 𝐿 based on the similarity. Hence,

one direction for future work is to develop methods for efficient query similarity calculation and

fine-grained adjustment of 𝐿.

8 CONCLUSION
In this paper, we introduce NGFix and RFix, which are designed to improve graph index quality by

exploiting the distribution of queries, with some theoretical foundations. Following prior work [65,

70], we divide the search process into two stages: (1) In the stage of approaching the query from the

entry point, we analyze the limitations of existing approximation strategies for graph construction

and introduce RFix to enhance the navigability of certain nodes; (2) In the stage of searching around

the query, we first propose Escape Hardness to evaluate the quality of the graph index in the vicinity

of the query. We then propose NGFix to dynamically fix defective regions of the graph based on

Escape Hardness. Our method outperforms state-of-the-art methods on real-world datasets and

significantly improves the accuracy of current hard queries.

Acknowledgments
We thank the anonymous reviewers for their valuable feedback and suggestions. This research

is supported by the National Natural Science Foundation of China (grant numbers, 62272252,

62272253), and the Fundamental Research Funds for Central Universities.

References
[1] 2024. Minimum spanning tree. https://en.wikipedia.org/wiki/Minimum_spanning_tree Accessed on January 7, 2025.

[2] Salam Albatarni, Sohaila Eltanbouly, and Tamer Elsayed. 2024. Graded Relevance Scoring of Written Essays with Dense

Retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information
Retrieval (Washington DC, USA) (SIGIR ’24). Association for Computing Machinery, New York, NY, USA, 1329–1338.

doi:10.1145/3626772.3657744

[3] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache locality is not enough: high-performance

nearest neighbor search with product quantization fast scan. Proc. VLDB Endow. 9, 4 (Dec. 2015), 288–299. doi:10.

14778/2856318.2856324

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://doi.org/10.1145/3626772.3657744
https://doi.org/10.14778/2856318.2856324
https://doi.org/10.14778/2856318.2856324

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:25

[4] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. 2018. HD-index: pushing the scalability-accuracy

boundary for approximate kNN search in high-dimensional spaces. Proc. VLDB Endow. 11, 8 (April 2018), 906–919.
doi:10.14778/3204028.3204034

[5] Franz Aurenhammer. 1991. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput.
Surv. 23, 3 (Sept. 1991), 345–405. doi:10.1145/116873.116880

[6] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. ELPIS: Graph-Based Similarity Search for Scalable Data

Science. Proc. VLDB Endow. 16, 6 (Feb. 2023), 1548–1559. doi:10.14778/3583140.3583166
[7] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2025. Graph-Based Vector Search: An Experimental Evaluation of

the State-of-the-Art. Proc. ACM Manag. Data 3, 1, Article 43 (Feb. 2025), 31 pages. doi:10.1145/3709693
[8] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. 2021. Frozen in Time: A Joint Video and Image

Encoder for End-to-End Retrieval. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 1708–1718.
doi:10.1109/ICCV48922.2021.00175

[9] Artem Babenko Dmitry Baranchuk. 2021. Text-to-Image dataset for billion-scale similarity search. https://research.

yandex.com/datasets/text-to-image-dataset-for-billion-scale-similarity-search Accessed on December 19, 2024.

[10] Dmitry Baranchuk, Dmitry Persiyanov, Anton Sinitsin, and Artem Babenko. 2019. Learning to Route in Similarity

Graphs. In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 475–484. https://proceedings.mlr.

press/v97/baranchuk19a.html

[11] Meng Chen, Kai Zhang, Zhenying He, Yinan Jing, and X. Sean Wang. 2024. RoarGraph: A Projected Bipartite Graph

for Efficient Cross-Modal Approximate Nearest Neighbor Search. Proceedings of the VLDB Endowment 17, 11 (July
2024), 2735–2749. doi:10.14778/3681954.3681959

[12] Patrick Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. 2023. FINGER:

Fast Inference for Graph-based Approximate Nearest Neighbor Search. In Proceedings of the ACM Web Conference 2023
(Austin, TX, USA) (WWW ’23). Association for Computing Machinery, New York, NY, USA, 3225–3235. doi:10.1145/

3543507.3583318

[13] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for YouTube Recommendations. In

Proceedings of the 10th ACM Conference on Recommender Systems (Boston, Massachusetts, USA) (RecSys ’16). Association
for Computing Machinery, New York, NY, USA, 191–198. doi:10.1145/2959100.2959190

[14] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004. Locality-sensitive hashing scheme based on

p-stable distributions. In Proceedings of the Twentieth Annual Symposium on Computational Geometry (Brooklyn, New

York, USA) (SCG ’04). Association for Computing Machinery, New York, NY, USA, 253–262. doi:10.1145/997817.997857

[15] B. Delaunay. 1933. Neue Darstellung der geometrischen Kristallographie. Zeitschrift für Kristallographie - Crystalline
Materials 84, 1-6 (1933), 109–149. doi:doi:10.1524/zkri.1933.84.1.109

[16] Liwei Deng, Penghao Chen, Ximu Zeng, Tianfu Wang, Yan Zhao, and Kai Zheng. 2025. Efficient Data-Aware Distance

Comparison Operations for High-Dimensional Approximate Nearest Neighbor Search. Proc. VLDB Endow. 18, 3 (April
2025), 812–821. doi:10.14778/3712221.3712244

[17] Matthijs Douze and Hervé Jégou. 2014. The Yael Library. In Proceedings of the 22nd ACM International Conference on
Multimedia (Orlando, Florida, USA) (MM ’14). Association for Computing Machinery, New York, NY, USA, 687–690.

doi:10.1145/2647868.2654892

[18] Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing Li. 2024. A

Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (Barcelona, Spain) (KDD ’24). Association for Computing

Machinery, New York, NY, USA, 6491–6501. doi:10.1145/3637528.3671470

[19] Chao Feng, Defu Lian, XitingWang, Zheng Liu, Xing Xie, and Enhong Chen. 2023. Reinforcement Routing on Proximity

Graph for Efficient Recommendation. ACM Trans. Inf. Syst. 41, 1, Article 8 (Jan. 2023), 27 pages. doi:10.1145/3512767
[20] Robert W. Floyd. 1962. Algorithm 97: Shortest path. Commun. ACM 5, 6 (June 1962), 345. doi:10.1145/367766.368168

[21] Cong Fu and Deng Cai. 2016. EFANNA : An Extremely Fast Approximate Nearest Neighbor Search Algorithm Based

on kNN Graph. arXiv:1609.07228 [cs.CV] https://arxiv.org/abs/1609.07228

[22] Cong Fu, Changxu Wang, and Deng Cai. 2022. High Dimensional Similarity Search With Satellite System Graph:

Efficiency, Scalability, and Unindexed Query Compatibility. IEEE Transactions on Pattern Analysis and Machine
Intelligence 44, 8 (2022), 4139–4150. doi:10.1109/TPAMI.2021.3067706

[23] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast approximate nearest neighbor search with the

navigating spreading-out graph. Proc. VLDB Endow. 12, 5 (Jan. 2019), 461–474. doi:10.14778/3303753.3303754
[24] Jianyang Gao, Yutong Gou, Yuexuan Xu, Yongyi Yang, Cheng Long, and Raymond Chi-Wing Wong. 2025. Practical

and Asymptotically Optimal Quantization of High-Dimensional Vectors in Euclidean Space for Approximate Nearest

Neighbor Search. Proc. ACM Manag. Data 3, 3, Article 202 (June 2025), 26 pages. doi:10.1145/3725413

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

https://doi.org/10.14778/3204028.3204034
https://doi.org/10.1145/116873.116880
https://doi.org/10.14778/3583140.3583166
https://doi.org/10.1145/3709693
https://doi.org/10.1109/ICCV48922.2021.00175
https://research.yandex.com/datasets/text-to-image-dataset-for-billion-scale-similarity-search
https://research.yandex.com/datasets/text-to-image-dataset-for-billion-scale-similarity-search
https://proceedings.mlr.press/v97/baranchuk19a.html
https://proceedings.mlr.press/v97/baranchuk19a.html
https://doi.org/10.14778/3681954.3681959
https://doi.org/10.1145/3543507.3583318
https://doi.org/10.1145/3543507.3583318
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/997817.997857
https://doi.org/doi:10.1524/zkri.1933.84.1.109
https://doi.org/10.14778/3712221.3712244
https://doi.org/10.1145/2647868.2654892
https://doi.org/10.1145/3637528.3671470
https://doi.org/10.1145/3512767
https://doi.org/10.1145/367766.368168
https://arxiv.org/abs/1609.07228
https://arxiv.org/abs/1609.07228
https://doi.org/10.1109/TPAMI.2021.3067706
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.1145/3725413

318:26 Zhiyuan Hua et al.

[25] Jianyang Gao and Cheng Long. 2023. High-Dimensional Approximate Nearest Neighbor Search: with Reliable

and Efficient Distance Comparison Operations. Proc. ACM Manag. Data 1, 2, Article 137 (June 2023), 27 pages.

doi:10.1145/3589282

[26] Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error

Bound for Approximate Nearest Neighbor Search. Proc. ACM Manag. Data 2, 3, Article 167 (May 2024), 27 pages.

doi:10.1145/3654970

[27] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product Quantization. IEEE Transactions on Pattern
Analysis and Machine Intelligence 36, 4 (2014), 744–755. doi:10.1109/TPAMI.2013.240

[28] Yutong Gou, Jianyang Gao, Yuexuan Xu, and Cheng Long. 2025. SymphonyQG: Towards Symphonious Integration of

Quantization and Graph for Approximate Nearest Neighbor Search. Proc. ACM Manag. Data 3, 1, Article 80 (Feb. 2025),
26 pages. doi:10.1145/3709730

[29] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar. 2020. Accelerating

large-scale inference with anisotropic vector quantization. In Proceedings of the 37th International Conference on
Machine Learning (ICML’20). JMLR.org, Article 364, 10 pages.

[30] Ben Harwood and Tom Drummond. 2016. FANNG: Fast Approximate Nearest Neighbour Graphs. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 5713–5722. doi:10.1109/CVPR.2016.616

[31] Nico Hezel, Kai Uwe Barthel, Konstantin Schall, and Klaus Jung. 2023. Fast Approximate Nearest Neighbor Search with

a Dynamic Exploration Graph using Continuous Refinement. arXiv:2307.10479 [cs.IR] https://arxiv.org/abs/2307.10479

[32] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 7132–7141. doi:10.1109/CVPR.2018.00745

[33] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. 2013. Learning deep structured

semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM International Conference
on Information & Knowledge Management (San Francisco, California, USA) (CIKM ’13). Association for Computing

Machinery, New York, NY, USA, 2333–2338. doi:10.1145/2505515.2505665

[34] Shikhar Jaiswal, Ravishankar Krishnaswamy, Ankit Garg, Harsha Vardhan Simhadri, and Sheshansh Agrawal. 2022.

OOD-DiskANN: Efficient and Scalable Graph ANNS for Out-of-Distribution Queries. arXiv:2211.12850 [cs.LG]

https://arxiv.org/abs/2211.12850

[35] J.W. Jaromczyk and G.T. Toussaint. 1992. Relative neighborhood graphs and their relatives. Proc. IEEE 80, 9 (1992),

1502–1517. doi:10.1109/5.163414

[36] Herve Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization for Nearest Neighbor Search. IEEE
Transactions on Pattern Analysis and Machine Intelligence 33, 1 (2011), 117–128. doi:10.1109/TPAMI.2010.57

[37] L. V. Kantorovich. 1960. Mathematical Methods of Organizing and Planning Production. Management Science 6, 4
(1960), 366–422.

[38] Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ramanujan, William

Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, and Ali Farhadi. 2022. Matryoshka Representation

Learning. In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,

K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc., 30233–30249. https://proceedings.neurips.cc/paper_files/

paper/2022/file/c32319f4868da7613d78af9993100e42-Paper-Conference.pdf

[39] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler,

Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation

for Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,

R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 9459–9474. https://proceedings.neurips.cc/

paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf

[40] Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. 2020. Improving Approximate Nearest Neighbor

Search through Learned Adaptive Early Termination. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,

USA, 2539–2554. doi:10.1145/3318464.3380600

[41] Haitao Li, Qingyao Ai, Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Zheng Liu, and Zhao Cao. 2023. Constructing Tree-based

Index for Efficient and Effective Dense Retrieval. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval (Taipei, Taiwan) (SIGIR ’23). Association for Computing Machinery,

New York, NY, USA, 131–140. doi:10.1145/3539618.3591651

[42] VictorWeixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. 2022. Mind the Gap: Understanding

the Modality Gap in Multi-modal Contrastive Representation Learning. In Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc.,

17612–17625.

[43] Peng-Cheng Lin and Wan-Lei Zhao. 2019. Graph based Nearest Neighbor Search: Promises and Failures.

arXiv:1904.02077 [cs.IR] https://arxiv.org/abs/1904.02077

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

https://doi.org/10.1145/3589282
https://doi.org/10.1145/3654970
https://doi.org/10.1109/TPAMI.2013.240
https://doi.org/10.1145/3709730
https://doi.org/10.1109/CVPR.2016.616
https://arxiv.org/abs/2307.10479
https://arxiv.org/abs/2307.10479
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1145/2505515.2505665
https://arxiv.org/abs/2211.12850
https://arxiv.org/abs/2211.12850
https://doi.org/10.1109/5.163414
https://doi.org/10.1109/TPAMI.2010.57
https://proceedings.neurips.cc/paper_files/paper/2022/file/c32319f4868da7613d78af9993100e42-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c32319f4868da7613d78af9993100e42-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.1145/3318464.3380600
https://doi.org/10.1145/3539618.3591651
https://arxiv.org/abs/1904.02077
https://arxiv.org/abs/1904.02077

Dynamically Detect and Fix Hardness for Efficient Approximate Nearest Neighbor Search 318:27

[44] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer
Vision 60, 2 (2004), 91–110.

[45] Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. 2021. HVS: hierarchical graph structure based on

voronoi diagrams for solving approximate nearest neighbor search. Proc. VLDB Endow. 15, 2 (Oct. 2021), 246–258.
doi:10.14778/3489496.3489506

[46] Kejing Lu, Chuan Xiao, and Yoshiharu Ishikawa. 2024. Probabilistic Routing for Graph-Based Approximate Nearest

Neighbor Search. In Proceedings of the 41st International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 235), Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan

Scarlett, and Felix Berkenkamp (Eds.). PMLR, 33177–33195. https://proceedings.mlr.press/v235/lu24l.html

[47] Prasanta Chandra Mahalanobis. 1936. On the generalised distance in statistics. Proceedings of the National Institute of
Sciences of India 2 (1936), 49–55.

[48] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. 2014. Approximate nearest neighbor

algorithm based on navigable small world graphs. Information Systems 45 (2014), 61–68. doi:10.1016/j.is.2013.10.006
[49] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical

Navigable Small World Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 4 (2020), 824–836.
doi:10.1109/TPAMI.2018.2889473

[50] Yusuke Matsui, Yusuke Uchida, Hervé Jégou, and Shin’ichi Satoh. 2018. [Invited Paper] A Survey of

Product Quantization. ITE Transactions on Media Technology and Applications 6, 1 (2018), 2–10. doi:10.3169/mta.6.2

[51] Blaise Munyampirwa, Vihan Lakshman, and Benjamin Coleman. 2025. Down with the Hierarchy: The ’H’ in HNSW

Stands for "Hubs". arXiv:2412.01940 [cs.LG] https://arxiv.org/abs/2412.01940

[52] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg, and Jure Leskovec. 2020. PinnerSage:

Multi-Modal User Embedding Framework for Recommendations at Pinterest. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (Virtual Event, CA, USA) (KDD ’20). Association for

Computing Machinery, New York, NY, USA, 2311–2320. doi:10.1145/3394486.3403280

[53] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. 2023. Efficient Approximate Nearest Neighbor

Search inMulti-dimensional Databases. Proc. ACMManag. Data 1, 1, Article 54 (May 2023), 27 pages. doi:10.1145/3588908

[54] Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren. 2023. iQAN: Fast and Accurate Vector Search with Efficient

Intra-Query Parallelism on Multi-Core Architectures. In Proceedings of the 28th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming (Montreal, QC, Canada) (PPoPP ’23). Association for Computing

Machinery, New York, NY, USA, 313–328. doi:10.1145/3572848.3577527

[55] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global Vectors for Word Representation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Alessandro
Moschitti, Bo Pang, and Walter Daelemans (Eds.). Association for Computational Linguistics, Doha, Qatar, 1532–1543.

doi:10.3115/v1/D14-1162

[56] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda

Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual

Models From Natural Language Supervision. In Proceedings of the 38th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 8748–8763. https:

//proceedings.mlr.press/v139/radford21a.html

[57] Jie Ren, Minjia Zhang, and Dong Li. 2020. HM-ANN: efficient billion-point nearest neighbor search on heterogeneous

memory. In Proceedings of the 34th International Conference on Neural Information Processing Systems (Vancouver, BC,
Canada) (NIPS ’20). Curran Associates Inc., Red Hook, NY, USA, Article 895, 13 pages.

[58] Ronald L. Rivest. 1992. The MD5 Message-Digest Algorithm. RFC 1321. doi:10.17487/RFC1321

[59] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo

Coombes, Jenia Jitsev, and Aran Komatsuzaki. 2021. LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-

Text Pairs. arXiv:2111.02114 [cs.CV] https://arxiv.org/abs/2111.02114

[60] Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and Harsha Vardhan Simhadri. 2021.

FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search. arXiv:2105.09613 [cs.IR]

https://arxiv.org/abs/2105.09613

[61] Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Krishaswamy, and Harsha Vardhan Simhadri.

2019. DiskANN: fast accurate billion-point nearest neighbor search on a single node. Curran Associates Inc., Red Hook,

NY, USA.

[62] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 1–9. doi:10.1109/CVPR.2015.7298594

[63] Yao Tian, Xi Zhao, and Xiaofang Zhou. 2024. DB-LSH 2.0: Locality-Sensitive Hashing With Query-Based Dynamic

Bucketing. IEEE Transactions on Knowledge and Data Engineering 36, 3 (2024), 1000–1015. doi:10.1109/TKDE.2023.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

https://doi.org/10.14778/3489496.3489506
https://proceedings.mlr.press/v235/lu24l.html
https://doi.org/10.1016/j.is.2013.10.006
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.3169/mta.6.2
https://arxiv.org/abs/2412.01940
https://arxiv.org/abs/2412.01940
https://doi.org/10.1145/3394486.3403280
https://doi.org/10.1145/3588908
https://doi.org/10.1145/3572848.3577527
https://doi.org/10.3115/v1/D14-1162
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.17487/RFC1321
https://arxiv.org/abs/2111.02114
https://arxiv.org/abs/2111.02114
https://arxiv.org/abs/2105.09613
https://arxiv.org/abs/2105.09613
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/TKDE.2023.3295831
https://doi.org/10.1109/TKDE.2023.3295831

318:28 Zhiyuan Hua et al.

3295831

[64] Warren S. Torgerson. 1952. Multidimensional scaling: I. Theory and method. Psychometrika 17, 4 (01 Dec 1952),

401–419. doi:10.1007/BF02288916

[65] Hongya Wang, Zhizheng Wang, Wei Wang, Yingyuan Xiao, Zeng Zhao, and Kaixiang Yang. 2020. A Note on Graph-

Based Nearest Neighbor Search. arXiv:2012.11083 [cs.LG] https://arxiv.org/abs/2012.11083

[66] JingdongWang, NaiyanWang, You Jia, Jian Li, Gang Zeng, Hongbin Zha, and Xian-Sheng Hua. 2014. Trinary-Projection

Trees for Approximate Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 2
(2014), 388–403. doi:10.1109/TPAMI.2013.125

[67] Mengzhao Wang, Weizhi Xu, Xiaomeng Yi, Songlin Wu, Zhangyang Peng, Xiangyu Ke, Yunjun Gao, Xiaoliang Xu,

Rentong Guo, and Charles Xie. 2024. Starling: An I/O-Efficient Disk-Resident Graph Index Framework for High-

Dimensional Vector Similarity Search on Data Segment. Proc. ACM Manag. Data 2, 1, Article 14 (March 2024), 27 pages.

doi:10.1145/3639269

[68] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A comprehensive survey and experimental

comparison of graph-based approximate nearest neighbor search. Proc. VLDB Endow. 14, 11 (July 2021), 1964–1978.

doi:10.14778/3476249.3476255

[69] Zeyu Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2023. Graph- and Tree-based Indexes for High-dimensional

Vector Similarity Search: Analyses, Comparisons, and Future Directions. IEEE Data Eng. Bull. 46 (2023), 3–21.
[70] Zeyu Wang, Qitong Wang, Xiaoxing Cheng, Peng Wang, Themis Palpanas, and Wei Wang. 2024. Steiner-Hardness:

A Query Hardness Measure for Graph-Based ANN Indexes. Proc. VLDB Endow. 17, 13 (Sept. 2024), 4668–4682.

doi:10.14778/3704965.3704974

[71] Jiuqi Wei, Xiaodong Lee, Zhenyu Liao, Themis Palpanas, and Botao Peng. 2025. Subspace Collision: An Efficient

and Accurate Framework for High-dimensional Approximate Nearest Neighbor Search. Proc. ACM Manag. Data 3, 1,
Article 79 (Feb. 2025), 29 pages. doi:10.1145/3709729

[72] Jiuqi Wei, Botao Peng, Xiaodong Lee, and Themis Palpanas. 2024. DET-LSH: A Locality-Sensitive Hashing Scheme with

Dynamic Encoding Tree for Approximate Nearest Neighbor Search. Proc. VLDB Endow. 17, 9 (Aug. 2024), 2241–2254.
doi:10.14778/3665844.3665854

[73] Qian Xu, Juan Yang, Feng Zhang, Junda Pan, Kang Chen, Youren Shen, Amelie Chi Zhou, and Xiaoyong Du. 2025.

Tribase: A Vector Data Query Engine for Reliable and Lossless Pruning Compression using Triangle Inequalities. Proc.
ACM Manag. Data 3, 1, Article 82 (Feb. 2025), 28 pages. doi:10.1145/3709743

[74] Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng Li, Ziyue Yang, Fan Yang, Yuqing Yang,

Peng Cheng, and Mao Yang. 2023. SPFresh: Incremental In-Place Update for Billion-Scale Vector Search. In Proceedings
of the 29th Symposium on Operating Systems Principles (Koblenz, Germany) (SOSP ’23). Association for Computing

Machinery, New York, NY, USA, 545–561. doi:10.1145/3600006.3613166

[75] Artem Babenko Yandex and Victor Lempitsky. 2016. Efficient Indexing of Billion-Scale Datasets of Deep Descriptors.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2055–2063. doi:10.1109/CVPR.2016.226
[76] Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi, Rich James, Jure Leskovec, Percy Liang, Mike Lewis, Luke

Zettlemoyer, and Wen-tau Yih. 2023. Retrieval-augmented multimodal language modeling. In Proceedings of the 40th
International Conference on Machine Learning (Honolulu, Hawaii, USA) (ICML’23). JMLR.org, Article 1659, 15 pages.

[77] Minjia Zhang, Wenhan Wang, and Yuxiong He. 2022. GraSP: Optimizing Graph-based Nearest Neighbor Search with

Subgraph Sampling and Pruning. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data
Mining (Virtual Event, AZ, USA) (WSDM ’22). Association for Computing Machinery, New York, NY, USA, 1395–1405.

doi:10.1145/3488560.3498425

[78] Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. 2023. Towards Efficient Index Construction and

Approximate Nearest Neighbor Search in High-Dimensional Spaces. Proc. VLDB Endow. 16, 8 (April 2023), 1979–1991.
doi:10.14778/3594512.3594527

[79] Bolong Zheng, Xi Zhao, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu, and Christian S. Jensen. 2020. PM-LSH:

A fast and accurate LSH framework for high-dimensional approximate NN search. Proc. VLDB Endow. 13, 5 (Jan. 2020),
643–655. doi:10.14778/3377369.3377374

Received April 2025; revised July 2025; accepted August 2025

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 318. Publication date: December 2025.

https://doi.org/10.1109/TKDE.2023.3295831
https://doi.org/10.1109/TKDE.2023.3295831
https://doi.org/10.1007/BF02288916
https://arxiv.org/abs/2012.11083
https://arxiv.org/abs/2012.11083
https://doi.org/10.1109/TPAMI.2013.125
https://doi.org/10.1145/3639269
https://doi.org/10.14778/3476249.3476255
https://doi.org/10.14778/3704965.3704974
https://doi.org/10.1145/3709729
https://doi.org/10.14778/3665844.3665854
https://doi.org/10.1145/3709743
https://doi.org/10.1145/3600006.3613166
https://doi.org/10.1109/CVPR.2016.226
https://doi.org/10.1145/3488560.3498425
https://doi.org/10.14778/3594512.3594527
https://doi.org/10.14778/3377369.3377374

	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES
	3 RELATED WORK
	4 ANALYSIS
	5 DESIGN
	5.1 Preprocess
	5.2 Escape Hardness
	5.3 Neighboring Graph Defects Fixing
	5.4 Reachability Fixing
	5.5 Index Maintenance

	6 EXPERIMENTS
	6.1 Experimental Setup
	6.2 Search performance
	6.3 Effect of Historical Query Set Size.
	6.4 Ablation Study
	6.5 Construction Time and Index Size
	6.6 Effect of Different Parameters
	6.7 Evaluation of Index Maintenance Methods

	7 DISCUSSION AND FUTURE WORK
	8 CONCLUSION
	Acknowledgments
	References

